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PREFACE.

My reason for writing a book on classical mechanics at the
-intermediate (undergraduate) level when so many good texts are already on
the market has to do with-the conviction that classical mechanics should be
taken to include not only particle mechanics and a bit on rigid bodies, but
also many-body systems often neglected in texts at this level. Consequently,
the present text treats elastic bodies, and also many-body systems from a fluid
and statistical point of view. There is a considerable amount of material on
hydromagnetic and plasma systems including a discussion of waves in hydro-
magnetic and hydrodynamic media from the elegant vantage point. afforded
by the theory of characteristics introduced early in the text. Other features
worth noting include a comprehensive discussion of vectors, a treatment of
adiabatic invariance, a thorough discussion of rocket motion, Lagrangign
and Hamiltonian formulations via the calculus of variations, a chapter on
. stability, and a modern treatment of relativity including the general theory.

Appropriate problems have been included at the end of each section
rather than lumped at the end of the chapter. The book as a whole is suitable
for either a one or two-semester course with the first six chapters comprising
the first semester. The level of mathematics is such that the two-semester
course of elementary calculus is prerequisite and the course of ordinary
differential equations is corequisite.

The author would like to-thank_his_typist who also doubles as his wife
and the mother of four tolerant childref; for her hard work and support
during the preparation of this book. Special thanks go to Professor Carl
Adler of East Carolina University for a critical reading of the manuscript.
Appreciation is also due to the reviewers and my editor Logan Campbell for
many helpful suggestions and comments.

JosepH NorwooD, JR.
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Chapter
One

PRINCIPLES
OF NEWTONIAN MECHANICS

1-1 The Nature of Mechanics

Mechanics, the study of the reaction of massive bodies to
forces imposed on them, was the first exact science developed by man,{ The
early Greeks dealt with questions concerning mechanics, but the answers
obtained were based, for the most part, on esthetic arguments rather than
experimental evidence. Clearly, the success of any theory generated in this
way can only be qualitative at best, and even this marginal triumph requires
luck. The chance of an exact agreement to within the limits of experimental
error is vanishingly small. It was not until the time of Aristotle that the
necessity for interplay between theory and experiment began to become
apparent. In his De Generatione et Corruptione Aristotle notes:*

Lack of experience diminishes.our power of taking a comprehensive view
of the admitted facts. Hence, those who dwell in-intimate association with -
nature and its phenomena grow more and more able to formulate, as the
foundation of their theories, principles such as to admit of a wide and
coherent development; while those whom devotion to abstract discussions
has rendered unobservant of the facts are too ready to dogmatize on the
basis of a few observations.

Unfortunately, Aristotle did not always practice what he preached in this
regard, and it was not until the time of Galileo that the scientific method
finally became established.

1 Aristotle, De Generatione et Corruptione, book I, cap. I1, H. H. Joachim (tr.).
Oxford: Clarendon Press, 1922.

1



b 2 ERINCIPLES OF NEWTONIAN MECHANICS : cH. 1

. The history of mechanics is closely associated with man’s interest in, and
ideas about, the motion of the heavenly bodies. Greek science had developed
a geocentric cosmology wherein the sup, stars, and planets all revolved in
circular orbits with the earth stationary and at the center of the universe.
This cosmology became dogmatized by the Church and was not seriously
challenged until Copernicus published his heliocentric theory 17 centuries
after the time of Aristotle. Galileo, whose career began about 40 years after’
the publication of Copernicus’ theory, was an outspoken critic of Aristotle’s
doctrines. The first to utilize the telescope for astronomical observations,
Galileo began to amass evidence against the geocentric cosmology of Aristotle.
The adverse reaction of the Church, however, caused him to become cautious
in his later work and to publish in the form of dialogues. These dialogues
presented both sides of the argument in such a way that the fallacies of the
3onventional view would be obvious to an openminded reader without the

ecessity for Galileo to commit himself directly in print. He wrote two of
these dialogues: Dialogues on the Ptolemaic and Copernican Systems published
in 1632 and Dialogues on Two New Sciences (motion and cohesion) published
in 1636. The dialogues on motion report Galileo’s experiments on accelera-
ting -bodies and contain his mature deliberations on their significance. He
states, for example, that all bodies fall at the same speed if the resistance of the
medium can be neglected, and he establishes that the path of a projectile is
parabolic under certain conditions.? His work on mechanics exerted a
profound influence on Newton, born in 1642, the same year that Galileo died.

Although apparently a slow starter as a student, Newton’s genius asserted
itself shortly after he entered Cambridge in 1661; he discoyered the binomial
theorem, developed properties of infinite series, and was one of the inventors
of differential calculus while still a student. The plague that swept Europe in
the 1660s caused the university toclose its doors at various periods. According
to Newton, it was during this time, which was spent at home on his mother’s
estate at Woolsthorpe, that the idea of universal gravitation was developed.?
Newton had read the work of Kepler, a contemporary of Galileo, while at
Cambridge. Kepler was a theoretician who had taken the precise planetary
observations of his mentor, Tycho Brahe, and had deduced three empirical
laws of planetary motion from these data. He recognized in a qualitative way
the presence of a universal binding force for planetary systems but was unable
to take the critical step to formulate a theory. Newton sought to find a law
of attraction between two massive bodies—for instance, the sun and a planet
—such that Kepler’s third law, which states that the square of the period of
rotation is proportional to the cube of the mean distance separating the two

2 Galileo understood that forces serve as mechanical agents, but he did not
manage to establish a quantitative connection between force and motion.
3 The “falling apple”’ incident supposedly occurred during this period.
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bodies, is obtained as a result. Newton found that a gravitational attraction

. that varies as the inverse square of the separation distance would produce this
relation. He attempted to test this inverse-square law by calculating'-' the
measurable ratio of the acceleration of the moon toward the earth to the
acceleration of falling bodies at the earth’s surface. It was not until Newton
managed to prove that homogeneous spheres attract one another as though
all their mass were concentrated at the centers that this test was successful.
Through his law of universal gravitation, Newton could now derive all three
of Kepler’s empirical laws.

In 1687 the Royal Society published Newton’s Principia, in which he
expounded his ideas on mechanics. The first two of the three parts of this
work are concerned with establishing the foundations of Newton's mechanics; -

“the third part presents a-detailed treatment of planetary motion. The three
laws of motion on which classical mechanics are based appear for the-first
time in this book. In formulating these laws, Newton had to break consider-
able new ground; he was the first, for instance, to distinguish between weight
and mass. ’

A broad range of phenomena can be described directly on the basis of
Newton’s laws. -This textbook is concerned primarily with such phenomena.
Certain types of problems are more amenable to treatment by the use of
alternative formulations of Newton’s theory that are due to Lagrange and
Hamilton. If the speeds attained by the bodies of interest are allowed to
approach the speed of light or if very large masses or distances are contem-
plated, then the theory of relativity developed by Einstein in the years 1904
through 1916 must be used. These departuresfrom pure Newtonian mechanics
are presented in the closing chapters as introductory material to a more
advanced treatment that is beyond the scope of this book. '

Kinematics is the branch of mechanics that deals with the classification and
description of the types of motions experienced by massive bodies. In many
of the problems with which we will deal, the net force acting on the body
vanishes. Such a condition is referred to as a state of equilibrium and can be
further classified as static if the velocity of the body is zero or stationary if the
velocity is constant but nonzero. The question of the stability of equilibria
will also be considered. In other cases, we shall be interested in bodies that
move under the action of forces; this branch of mechanics is called dynamics.
The bodies whose mechanical state we will examine include point masses
(particles), systems of particles, systems of many particles' (gases), fluids,
elastic bodies, and rigid bodies.

1-2 Scalars, Vectors, and Tensors

The concept of a field is almost universal in physids| A field
can be regarded as a mathematical idealization of some physical phenbmenon
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.involving the notion of extension. The simplest fields can be specified by
assigning a single measure number at each point of space, as, for example, the
temperature distribution in an extended body. Fields of this type are known
as scalars. Other fields deﬁcnptlve of common phenomena require three
measure numbers at each point of space and are called vector fields.* Scalars
and vectors are special cases of an elegant class of functions known as tensors.
Scalars are tensors of zero rank and vectors are tensors of the first rank.

‘The special property of tensors that makes them so uniquely useful in
formulating physics is their invariance under coordinate transformation.

Clearly, it is desirable for a physical theory to be formulated in such a way
as to be independent in its-results of the choice of coordinate system. This
choice should be made purely on the basis of convenience. For instance, a
temperature distribution may be written in one coordinate system as 7T'(x, y, z)
and in terms of another coordinate system as 7'(x’, y’, z"). The property that
distinguishes a scalar like 7 from a nonscalar. function of the coordinates is
‘that for scalars

T(xa s z) = T(X’, y,’ Z'). (1'1)

A vector is similarly distinguished from a nonvector, function by its
invariance under coordinate transformation. In drder to ascertain the mathe-
matical criteria for this invariance, let us examine the changes in the coordi-
nates of a point as the coordinate system is rotated about an axis passing
through its origin. In Fig. 1-1 we show a point P from the point of view of

~

- : . X,

P(-‘fl -Xz)

- P(x}.x5) .t
_______ =2 12727 X

X1

Fig. 1-1

two coordinate systems rotated through an angle @ with respect to one
another. The axes are labeled x,, x, instead of x, y in order to facilitate the
use of summation notation. By simple trigonometry, we see that the primed

* In spaces having a dimensionality higher than three, more measure numbers |
at each point are required, the number being equal to the dxmensnonahty of the
space in question. In the present discussion and throughout most of the book we
shall only be concerned with the three-dimensional Euclidean space.
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coordinates of P are given in terms of the unprimed coordinates and the
angle 6 by < AP g
X, = x5 cos 0 + x,sin 0, 1-2)
- X3 = —X; 8in 0 + x5 cos 6. ;

Let us introduce : ;
Ay = cos (xi, X;) - (1-3)
for the cosine of the angle between the x; and x; axes. From Fig. 1-1 we
see that

Ay = cos (x3, X;) = cos 0,

A2 = cos (x3, xg) = cos (’-’ - 0) = sin 6,

2 b
(1-4)
Ag; = cos (x5, X;) = cos (12' + 0) = —sin 6,
Agg = c0s (X3, X5) = cos 8,
in terms of which Eq. (1-2) can be written
‘ Xy = AnX; + ApaXa, (1-5)

Xg = Ag1Xy + AgaX.
The extension to three dimensions is perfectly stralghtforward
X3 = Aixy + A1aXa + AaXs,
_ X3 = Ag1X; + AgaXg + AgsXs, (1-6) -
x5 = Ag1¥1 + AgaXa + AgaXs.
Equation (1-6) can be written much more compactly in summation notas
tion as

2 Mpxs, - i=1,23. (1-7

" The symmetry of this equation allows the inyerse transformation to be written
by inspection:

Xyt lil Apxy, i= 12,3, (1-8)
- The A, are often written as a square array called a matrix, where A denotes
the matrix
. ( An Az Aga
A= 2 A Ayg]. (1-9)
J A31 ASR "‘33
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Let us examine the properties of this matrix. In Fig. 1-2 we have a line
of length R drawn in an arbitrary direction from the origin of a rectangular
coordinate system to the point P. The direction of OP is described by the
angles «, B, y between OP-and the x;,, X, x; axes, respectively. If the coordi-
_ nate axes are mutually orthogonal, then R, + R%, + R, = R? by virtue
of the theorem of Pythagorus. Since R,, = Rcos« and similarly for the
X, and x; components, the direction cosines must be related according to

cos? @ + cos? B + cos?y’=1. (1-10)
X3 .
RX] u\
\\\
\\
\
\
N\
NP
1
R/ |
T /i
|
I
|
;|
| sz
¢ : 7 X2,
o H /
| s
} 7/
| /
l/
Rxl ___________ i’
X
Fig. 1-2

If we take OP to bé, say, the x; axis in the (x,, X, X3) coordinate system,
we see that
A+ A+ =1

and similarly for the x3 and x5 axes. This result can be expressed in summa-
tion notation as

DMy =1, i=k, (1-11).
1 v
which amounts to three relations between the nine elements of the \ matrix. _

Next, consider two lines drawn from the origin of a rectangular coordinate
system such that the lines are characterized by direction cosines (cos a;,
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cos By, cos y;) and (cos e, cos B, COS y,), respectively. The cosine of the
angle 6 between these lines is then given by
cos 0 = cos «; Cos e + cos B, cos Bz + COs y; €OS ¥,. (1-12)
In terms of, say, the x; and xj axes in the (x,,x,, x;) coordinate system,
Eq. (1-12) can be expressed in terms of the matrix elements as
cosg =0 = Ayhg; + Aghag + Aghyg

and we are led to a second general relation

S hhy =0, ik (1-13)
; 7 )
Equafions (1-11) and (1-13) can be combined into a single summation equation
Z Au’\m - aik’ (]'14)
7 :
where 8, is the Kronecker delta symbol, defined by
0, i#k,
Oy = &
* {1, i=k. (:19)

The six relations represented by Eq. (1-14), which is called the orthogonality
condition, are based on the fact that the coordinate axes in each of the
coordinate systems are mutually perpendicular.

The X\ matrix given in Eq. (1-9) is a square matrix—that is, it has an equal
number of rows and columns. Such is not true of all matrices, however.
‘For instance, we can write the three measure numbers that define the
coordinates of a point as either a column matrix

Xy
x=|x; (1-16)
X3
or a row matrix
%= (%; - X3 i%3). (1-17)

Next, we need to establish the rules describing the multiplication of two
matrices. These rules have, in effect, already been established by the require-
ment that they be consistent with Eq. (1-7) when x. and x; are written in
matrix form. Thus we find that .

x1\ A1 Aa Agg X
X'=xx=[x3] ={2 Azn‘ Ags | | Xa (1-18)
X3 Asr Az Ass X3
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must be equivalent to
X1 = Xy + AjaXa + AigXa,
X3 = /\21-;‘1 + AggXz + AgsXs, ‘ (1-19)
X3 = Xg1X; + AgaXz + AgaXa. : "

This establishes the multiplication rule for the special case of the product
of a 3 x 3 matrix and a 3 x 1 matrix. For the more general case where
the number of rows of the first matrix and the number of columns of the
. second matrix are arbitrary, the product rule is

Ry=3PuQu ~° - 020

for the product R = PQ. We see that in order for the product' QP to be
defined, Q must have the same number of columns as P has rows. A particu-
larly interesting aspect of matrix multiplication is that the product is, in
general, noncommutative. That is,

PQ # QP. (1-21)

Indeed, unless the two matrices are both square, QP is not even defined.
~ The transpose of a matrix P is accomplished by interchanging rows and
columns—that is,

,Fu = Py, (1-22)

where P denotes the transpose of the matrix P. If we consider two matrices,
-P of order (n x h) and Q of order (h x m), then the product PQ is defined
and' R = PQ is of order (n x m). Consider the transposed matrices. The
- transpose of P-is of order (h x n) and Q is of order (m x k). Thus PQ is
undefined and we find for R

R = @QP. (1-23)

In general, if F = ABCD...X, then F = X...DCBA.
The unit matrix or identity matrix is given by

E = &, (1-24)

where §,; is the Kronecker delta. So it is a matrix, all of whose off-diagonal
elements are zero, with the diagonal elements all equal to one. This matrix
leaves any matrix with which it is multiplied in either order unchanged:

EP = PE = P. - (1-25)

The X matrix with which we have been concerned in this section enjoys
the property that

\ | P y : (1-26)
or xX=Xx_=E' (1-27)



