DISCRETE
MATHEMATICS

FOR COMPUTER SCIENTISTS

JOHN TRUSS &®

ZEWRE s 3)

J.K. Truss e ¥

University of Leeds

>‘£‘ f‘ m + ¢. ”L'&.‘gj

dk¥xoSpM-LEE-BR

&

T &
¢ B
HRHE.
€ Bl &
ﬁ ﬁ!
oA
B
B
ML
£

Discrete Mathematics for Computer Scientists

J. Truss

B

HREBHERAFITRLE

LR PEGENRI™

HAEBLEAFRCRAR CETHBITAXE 1375 100010)
K327 850 X 1168 B 3k 19

1999 4 A LK 1999 4 4 B3E 1 IKEDKY

7-5062-4117-X/ 0#237
EF 01-99-0744
98.00 7

HREBLBLFILTLFEHE Addison Wesley Longman Limited 1EINEHRE
WARKEEIRIT.

Preface -

Discrete mathematics and mathematical logic lie at the heart of any modern
study of computer science. The rise of the digital computer over the second half of
the twentieth century has coincided with a growth of interest in these fields, and
discrete mathematics has now become a major area of mathematics in its own
right. Of course it is possible to make excellent and effective use of computers
without involving oneself in mathematical considerations. But any under-
standing of how computers operate, in terms of either their hardware or software,
inevitably involves mathematics, even ignoring the fact that many of the
applications of computing lie in facilitating numerical and combinatorial
calculations.

The sort of mathematics that arises in a computing context is not necessarily
what most people would consider to be mathematics at all. Its character may seem
more like that of ‘mere’ organization, symbol management, or data manipulation.
Can one really justify calling this subject, where one may not even mention
numbers, mathematics? 1t is quite true that the mathematics required for comput-
ing is not the classical mathematics of Newton and Leibniz. But mathematics is
much more than that, and in its role of searching out patterns, treating them
systematically and rigorously, passing from the particular to the general, is bound
to adapt to changing circumstances. The particular discipline which more than any
other has come into its own as a result of this change of emphasis is mathematical
logic, which now has a similar status in computer science to that of classical
mathematics in newtonian physics.

Mathematics is a fascinating and significant subject in its own right which,
irrespective of any applications, deserves attention from anyone wishing to
understand the world we live in, and the complicated and beautiful patterns it
contains. The fact that mathematics is also useful can be regarded as a genuine
bonus, though it is perhaps an inevitable consequence of its deep underlying logic
and elegance. I would like to feel that, although many who read this book may do
so because they have to, they will nevertheless obtain some pleasure, and that
mathematics will be seen as it should be: not as a complicated and incomprehens-
ible collection of irrelevant abstractions, but as a living and powerful subject, one
full of delight and interest for those who study it. §

vi

Preface

Readership and prerequisites

The principal intended readership for the book are first- or second-year computer
science undergraduates at freshman or sophomore level. Much of the material here
is appropriate for courses in discrete mathematics and theoretical computer science
at this stage, in particular most of the first eight chapters. Other topics have been
included which certainly come under the heading of mathematics suitable for a
computer science readership, but which are pitched at a slightly higher level.
Whereas some of these can, one hopes, be tackled by first-year students, many are
normally taught at a later stage, in the second or even third year (junior level).
This, it is hoped, will make the book more widely useful, and will make it possible
for an enthusiastic student to see where the more basic work leads, while still being
sufficiently approachable for relative beginners. A small number of sections have
been ‘starred’, to indicate that they are rather more advanced than the main part of
the text, and they are not directly used in what follows them. Careful note has
been taken of the ACM recommendations for a discrete mathematics syllabus; for
example, the syllabuses proposed by Bertziss (1987) are fully covered by what is
included in the book.

The presentation is intended to be essentially self-contained: it should in
principle be possible for a reader with very little mathematical background to
understand almost everything. In particular, it should be emphasized that a
knowledge of the differential and integral calculus is not a prerequisite. They are
referred to and used occasionally, but their role is relatively minor, and the one or
two sections where they are needed can be omitted without great detriment. (The
differential and integral calculus are not to be confused with the propositional,
predicate, and lambda calculus, which most certainly do occur, and are very
important.)

Some mathematical maturity is nevertheless desirable, particularly when coping
with the more advanced material in the later chapters. Throughout the text,
knowledge of basic high-school algebra will be assumed, and some knowledge of
programming concepts would be a help. To assist readers who are less familiar with
the necessary background material, I have included in the second edition a short
appendix as revision of some basic algebra, polynomials, factorization, rational
functions, and complex numbers, with some exercises. Where sections of
algorithms or ‘programs’ have been included, the notation should be clear; the
style adopted is mostly that of a PASCAL-like language.

Outline of topics

The first chapter begins at the beginning with the basic data types of computer
science (or for that matter, mathematics), which are examined in some detail. They
are the natural numbers, integers, rationals, reals, and radix systems. Pride of place
is given to mathematical induction, one of the most important topics for a
computer scientist, in view of looping and recursion in computer prograrms, and
there is some discussion of simple correctness proofs. It is here that the central
notion of an algorithm is first described.

Preface vii

Mathematical logic is the cornerstone of contemporary computer science. This
may be familiar to the student as applied to switching circuits, but the impact of
logic goes much deeper than this. Computer programs are themselves ‘formal
proofs’ in a sense (or at least formal computations) so their construction and
verification is, or is akin to, formal logical manipulation. Two chapters are devoted
to logic, Chapters 2 and 7. In Chapter 2 we introduce the two main kinds of
language considered, propositional logic, where the basic (atomic) building blocks
are ‘propositions’ linked by the connectives ‘and’, ‘or’, ‘not’, and ‘if...then...’,
and first-order predicate logic, where variables which are intended to range over a
possible domain of interpretation may be quantified as ‘there exists’ or ‘for all’.
This chapter includes some familiar computing applications, as well as explaining
how to write appropriate sentences of natural language in a formal way.

Topics which are more central in mainstream logic are presented in Chapter 7,
principally the notion of a formal proof, here given using a natural deduction
system, and the links with interpretations (the semantics) via the completeness
theorem for propositional or predicate logic are explained. These ideas are also
central in the study of programming languages, where one can consider the
formal, syntactic aspects, as well as the meaning of a program, either how it is
intended to behave (its operational semantics), or what it is intended to stand for
(its denotational semantics). As an illustration of these connections, some intro-
ductory material on logic programming is given in Section 7.3. Topics allied to
logic, but which are introduced before Chapter 7, are boolean algebras and
complete lattices (the latter used in denotational semantics). These are covered in
Chapter 6, together with other important notions associated with orderings of
various kinds, the most pervasive of which is that of a tree.

In Chapter 3 the modern language for handling sets, relations, and functions is
introduced. The view is taken that programs are more or less the same as functions,
or at any rate that functions are realized by implementations of programs.

Chapter 4 serves principally as an introduction for other parts of the book.
Linear algebra occurs widely in applications, for example in combinatorics, graphs,
and coding theory. The last two sections of the chapter treat groups and
semigroups, also topics of wide applicability. Only the basics are covered here,
but enough of a grounding is given to meet the requirements of later chapters.

Combinatorics, which is discussed in Chapter §, is an attractive and popular
part of the subject, and one could say that this is what really constitutes the core of
discrete mathematics. This chapter also includes a section on probability (the ideas
and arguments are very closely related to those of combinatorics) and one on the
solution of difference equations. Difference equations are required for analysis of
algorithmic complexity, and since computers are frequently used in the numerical
solution of differential equations via their discretized versions (which are differ-
ence equations), there is a dual purpose in including this material.

A central topic in discrete mathematics is graph theory, and this is covered in
Chapter 8. The language of graph theory allows us to visualize combinatorial
problems diagramaticaily, and many issues which arise in computing correspond
to geometrical features of the resulting graphs or digraphs, for instance connected-
ness and accessibility, colourings of vertices, and the existence of paths of various

viii

Preface

sorts. There is space here to include only an introduction to the subject, but the
topics chosen are ones which form strong links with those in the rest of the book,
such as trees, logic, and algorithms.

The final three chapters examine slightly more advanced topics, which never-
theless are of central importance. Ever since Alan Turing gave his analysis of the
notion of computability in 1936, even before the first electronic digital computer
had been built, the study of formal machines of various sorts has proved an active
area, and has provided the appropriate theoretical background for the study of the
capabilities and limitations of real machines. Chapter 9 studies finite automata and
the corresponding regular languages they recognize, and then looks at the wider
notions of computability on register machines and Turing machines (which turn
out to be equivalent). The theme of feasibility - the question not only of whether
something can be calculated, but also of how long it might take - is taken up in
Chapter 10. Apart from some analysis of well-known arithmetical algorithms,
methods for sorting and searching are described. The most important topic of
Chapter 10, however, is that of NP-completeness, associated as it is with so many
combinatorial problems arising in practice, for instance in operational research.

Chapter 11, on coding theory, is devoted mainly to error-correcting codes
(cryptography is also mentioned at the end of Chapter 10). The modern theory of
error-correcting codes, apart from its evident utility, provides a striking illustration
of the application of algebraic and combinatorial methods in computer science.
Specific topics covered are linear block codes, variable-length and Huffman codes,
and the chapter concludes with an introduction to information theory, which
among other things studies the limitations on the amount of information it is
possible to convey over a channel.

Structure and use

The pedagogical approach used is fairly standard. I have attempted to aim above all
for clarity and an interesting and relevant choice of material. The chapters are
arranged in sections with their own introductions and exercises. There are over 700
exercises in all, and within each section these have been arranged as far as possible
in increasing order of difficulty, rather than in order of presentation of the topics.
Answers to selected exercises are provided. Answers to the remaining exercises are
available in a Solutions Manual from Addison Wesley Longman. There is a summary
at the end of each chapter. Terminology is for the most part standard and special
symbols have been listed at the beginning of the book. In order to distinguish
clearly between logical symbols and the corresponding operations in a boolean
algebra, I have used A, v, and - (not) for the former, and A, v, and — for the latter.
1 have used hcf (highest common factor) as opposed to gcd (greatest common
divisor), and this and other usages are clearly indicated in the index and list of
symbols.

The reader is of course at liberty to read (some or all of) the chapters in any
order he or she wishes. Although I have adopted what seems to me a sensible and
logical development of the material, many other ways of organizing the work
could also have been followed. It is certainly possible to take things in other orders

.

PR

Preface ix

Chapter 10 - Chapter 11
l Chupler9—’ |7Chapler8) l Chapter 5
P Chapter 7 }\ \[Chapter4
|
i

1 /,,(Chaplcmj :

[E;—Iﬂ—}" ______________________ i Chapter 3 ’
apter 2 [
—— /

| Chapter ! }

or to treat topics selectively. The principal pattern of chapter dependences is
shown in the diagram, with strong and weak links indicated, though there are
occasional other cross-references between chapters not shown as connected. Weak
dependences typically occur where only a section of an earlier chapter is a
prerequisite for the later one; this makes for greater flexibility than is indicated
in the diagram. For instance, the only essential dependence of Chapter 5 on
Chapter 4 comes about in the section on permutation groups (Section §.2), and it
is possible to understand the rest of Chapter 5 on the basis of the first three
chapters alone. I illustrate four possible courses which could be built from parts of
the material covered:

1. Introductory course on discrete mathematics: Sections 1, 2.1, 3.1-3.3, 4.1-4.5,
5.1-5.2, 6.1-6.2, 8, and 10.1-10.2.

2. Course on the foundations of computability and logic: Sections 1, 2, 3, 4.6, 6,
7,and 9.

3. Course on algebraic methods in computer science: Sections 1, 3, 4, 5.2, 6.3,
and 11.

4. Course on discrete mathematics, with emphasis on algorithms: Sections 1, 2,1,
3,5 8,9 and 10.

One could envisage other selections. Also, if students had the necessary prior
knowledge, it would be possible to omit some of the introductory material in
planning a more advanced course. Best of all though is to use the whole book.

Acknowledgments

I would like to acknowledge the helpful comments on drafts of this book made by
R.A. Duke, R.O. Gandy,].C. Higgins, J. van Leeuwen, A. McGettrick, D.M. Spresser,
and S.S. Wainer. I would particularly like to thank R.O. Gandy for permission to
use unpublished material of his on register machines (Section 9.2). R.R. Burnside
and A.R.G. Macdivitt provided encouragement in the early stages when I was
teaching a course at Paisley College which included much of the material used

x Preface

here. I would like to thank the editorial staff at Addison Wesley Longman, in
particular S. Mallen and S. Plumtree, for helpful suggestions and encouragement
throughout the project, and E. Mitchell and anonymous referees during
preparation of the second edition. ‘

J.K. Truss, Leeds
March 1998

Contents

Preface

List of symbols

1 The natural numbers

— e
Ao

Number systems

Radix r representation of integers
Mathematical induction

Algorithms, programs, and correctness proofs

2 Introductory logic

2.1
2.2
23

Propositional logic
Some computing applications
Predicate logic

3 Sets, relations, and functions

31
3.2
3.3
34

Sets and relations

Functions

Equivalence relations

Cardinals; countable and uncountable sets

4 Algebraic topics

4.1
4.2
4.3
4.4
4.5
4.6

Rings and fields

Vector spaces

Linear transformations and matrices
Systems of equations; matrix inverses
Groups

Semigroups

xiv

10
21
35

48

49
61
74

85

86
99
116
123

135

136
143
151
159
174
185

xi

xii Contents

10

1

Combinatorics

5.1 Counting principles

5.2 Permutation groups and applications

5.3 Probability

5.4 Ramsey theory

5.5 Difference equations «

Partially ordered structures

6.1 Partially ordered sets

6.2 Trees

6.3 Boolean algebras
6.4 Llattices

Further logic

7.1 Formal proofs in propositional logic
7.2 Completeness of predicate logic
7.3 Logic programming

Graphs

8.1 Graphs, digraphs, and trees

8.2 Euler’s formula and colourings of graphs
8.3 Transitive closure and connectedness
8.4 Eulerian and hamiltonian circuits

Formal machines

9.1 Automata and regular expressions

9.2 Register machines

9.3 Codes for programs and the insolubility of the halting
problem

9.4 Primitive recursive functions; diagonalization

9.5 Turing machines

Analysis of algorithms and complexity theory

10.1 Rates of growth of functions

10.2 Algorithms for integer addition and multiplication
10.3 Sorting and searching by pairwise comparisons
10.4 Intractable problems and NP-completeness

Coding theory

11.1 Error-correcting codes

11.2 Linear codes

11.3 Variable-length and Huffman codes
11.4 Information theory

190

191
205
215
225
234

252

253
258
272
279

286

287
297
306

318

319
330
338
355

369

370
383

394
402
413

422

423
430
439
453

465

466
476
491
503

Appendix
Answers to selected exercises
Bibliography

Index

Contents

xiii

516
530
571
573

xiv

List of symbols

(Note that some symbols are used in more than one sense, but the context should
make it clear which applies.)

{ay, a2, ..., aq}
(ar, az, ... an)
(@, az, ... an)

a-baxb
axb
aob
a~b
a=bmodn
adc
adivb
(aij)

a mod b
AII
Ay(n, d)

arg z
AT
Aksy
Ro

set with members ay, az, a,
ordered n-tuple (sequence of length n)
code for sequence (ai, az, -... da)

cartesian product of A with itself
cardinality of A (number of members of A)
inverse of matrix A

cartesian product of A and B

set of functions from B into A

a times b

a times b (in some programs)

result of applying operation o to a and b

a is equivalent to b (under equivalence relation ~)
a and b differ by a multiple of n

add and carry

integer part of (a divided by b)

matrix whose (i, j)th element is a;;
remainder on dividing a by b

set of n-tuples of members of A

largest size of code of length n of minimum
distance d over alphabet of g symbols
argument of complex number z

transpose of matrix A

structure A satisfies formula p at assignment v
aleph 0 (Hebrew letter)

boolean algebra

blank

capacity of a channel

set of complex numbers; boolean algebra
conditional connective

86
91
395
93
124
168
92
108
3,136
39
175
117
7
431
107
140
107
93

474

526

142

301

124

272

414

509

S, 278, 825
73

List of symbols xv

D, group of symmetries of a square 183
Dy, dihedral group of order 2n 184
dom f domain of function f 99
da(x, y) distance from x to y; Hamming distance between

xand y 327, 466
e base of natural logarithms, = 2.71828... 4
E shift operator, E(f)(n) = f(n + 1); edge set of a

graph 245, 320
e(C) average error probability of code C 507
e(C) maximum error probability of code C 507
eor exclusive or 73
E(X) expected value (mean) of X 220
exp exponential operator, exp (x) = e* 234, 240
F false; set of faces of a planar representation

of a graph; set of final states of a

finite automaton or Turing machine 53, 331, 372, 414
f derivative of f (sometimes) 108
f! inverse of function f 102
fA image of set A under function f 100
A inverse image of set A under function 101
fle) final vertex of edge e 320
f=g f and g have equal growth rates 426
fix (o) fixed-point set of permutation ¢ 210
£ n-dimensional vector space over field F 144
"Fu number of functions from r-element set onto

n-element set 196
F, field with g elements 149
fix restriction of function f to X 104
fi—y function f with x overridden by y 105
fix) image of x under function [100
f:X—Y f is a function from X into Y 100
f:x—y equivalent to f(x) =y 107
G complement of graph G 463
ged greatest common divisor (= hcf) 36
gof composition of functions f and g 102
|G : H| index of subgroup H in G 182
gp (X) subgroup generated by X 180
Gy stabilizer of x in permutation group G 209
H(A, B) joint entropy of A and B 508
hef highest common factor 36
H(X) entropy of random variable X 506
H(XY) conditional entropy of X, given Y 514
i square root of -1 5, 525
i program input 103
i instruction number i 383
i

contents of register i 383

xvi List of symbols

KA|B)
Hailby)
idx
ie)
I(E)

I

Km, n

K

K»

lem
lim,_.a,
L(M)
logn
logya
max {(a, b)
min (a, b)
m-=n

N

N

n!

nand
Ny
nor
NP

—

(¢

=0()

0
f
f=0
P

{P}m(xh

{P}m(x\'
{P}m(xh

P(n,r)

Pll (X)
Pr (E)
Pr (X|Y)

system mutual information

gain in information about a; given by b;
identity on X

initial vertex of edge e

information conveyed by event E

integrating factor; n x n identity matrix (written
as I if n is understood)

complete bipartite graph on m, n vertices
complete graph on n vertices

graph with n vertices and no edges

lowest common multiple

limit of a, as n tends to x

language accepted by machine M

logarithm of n to base 2

logarithm of a to base b

greater of a and b

smaller of @ and b

m — n if m 2 n, 0 otherwise

model of arithmetic with domain N

set of natural numbers {0, 1,2, ...}

n factorial =nx (n-1)x(n-2)x---
x3x2x1{0i=1)

formal symbol for ‘not...and...
semigroup of integers =N under +

formal symbol for ‘not...or...’

ctass of problems soluble in polynomial time on
non-deterministic Turing machine

number of ways of choosing r elements out of n
program output

f has growth rate less than or equal to that of g
f has slower growth rate than ¢

class of problems soluble in polynomial time on
deterministic Turing machine

output on running program P on input

(X1, ooy Xm)

computation by P on input (xi, ..., X} converges
computation by P on input (xy, ..., Xn) diverges
number of r-tuples of distinct members of
n-element set

nth power set of X

probability of event E

conditional probability of X given Y

final state of computation by P from state §
computation by P starting from state § converges
computation by P starting from state § diverges
power set of X

'

504,

167,

508
508
102
320
508

239
328
323
337

45
426
372
248
429
188
346
405
304

45
65
185
66

454
194
103
425
426

455

391
391
391

194
204
215
218
391
391
391

88

{x: P(x}}

range f
r.e.
rev (1)

rev, (1)

R"
RIX
RTC (R)

sg X

Sn

sp (X)
SoR
Sym (X)
Sll

t/x

T

TC (R)
Tmle, x, ¥)
Ui
U+x

|4

N

(x}"
xRy
X-Y

List of symbols

set of x having property P

set of states of finite automaton or Turing
machine

set of rational numbers

initial state of finite automaton or Turing
machine

set of real numbers

class of regular languages

inverse of relation R

range of function f

recursively enumerable

number whose radix 10 expansion is reverse of
that of n

number whose radix r expansion is reverse of that
of n

n-dimensional real vector space

domain restriction of relation R to X
reflexive transitive closure of relation R
assignment of values in domain to variables
register machine state; successor function
next state after §

formal symbol for successor
1ifx>0,0ifx=0

Stirling’s approximation to n!

subspace spanned by X

composition of relations R and §

group of all permutations of X

symmetric group on # letters -
result of substituting term t for variable x .
true

transitive closure of relation R

Kleene's T-predicate

projection function UM Xy, -y Xn) = X
translated subspace of U by vector x
vertex set of a graph

assignment of truth values

set of vertices of a graph having degree n
equivalence class containing x

inverse of x (under some binary operation)
boolean inverse of x

integer part of x

vector

absolute value of real number x

set of n-element subsets of X

relation R holds between x and y (‘infix’ notation)
difference of two sets

372,

372,

390,

xvii

86

413
3

414
4
371
95
100
402

21

412
144
104
338
301
403
390

75
408
198
146
101
179
179
312

53
338
396
403
164
320

56
335
117
176
272
269
143
426
229

94

88

xviii List of symbols

[x 7]
[x, ¥)
(x5
x™y
|zl

z

z

V4

Zn
FEe
| QL)
&

A

€

Ax . P(x)
u

(9, Prj
=(n, k)
p(n, k)
g
SEU
z

Et

XA
Er
e

o]

i)

0

1

ol

2

I

v

3

A

Y

closed interval {z:x <z <y} 97
semi-open interval {z:x <z <y} 97
open interval {z: x < z < y}; ordered pair of

x and y 91, 97
(sometimes x - y) x concatenated with y 185, 371
modulus of complex number z 526
complex conjugate of complex number z 526
set of integers 2
zero function 403
set of integers modulo n 7
 is logical consequence of I’ 55, 301
 is provable from I’ 287
transition function for finite automaton or

Turing machine; §(x) =x = 1 372, 414, 405
symmetric difference, AAB = (A - B)U (B - A);

difference operator, (Af)(m) =f(n+1) - f(n) 97,234
empty string; (small) positive real number 127, 427
function taking x to P(x) for each x 108
least number operator 410
sample or probability space 215
ratio of circumference of circle to its diameter 4
partition of a set 118
partition defined by equivalence relation ~ 118
number of partitions of n-element set into

k pieces 204
number of ordered partitions of n-element set into

k pieces 204
standard deviation 221
formulae » and v are logically equivalent 63, 80
alphabet (list of symbols) 127
set of strings over alphabet L 127
characteristic function of A 106
formula i is valid 55, 301
formula is provable . 291
zero vector 143
‘zero’ of a boolean algebra 272
formal symbol for 0 75
‘one’ of a boolean algebra 272
product 188
summation 11
integral 108
general equivalence relation 117
for all 22
there exists 75
and (formal use) 50

formal symbeol for ‘ot’ 50

