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Preface -

Discrete mathematics and mathematical logic lie at the heart of any modern
study of computer science. The rise of the digital computer over the second half of
the twentieth century has coincided with a growth of interest in these fields, and
discrete mathematics has now become a major area of mathematics in its own
right. Of course it is possible to make excellent and effective use of computers
without involving oneself in mathematical considerations. But any under-
standing of how computers operate, in terms of either their hardware or software,
inevitably involves mathematics, even ignoring the fact that many of the
applications of computing lie in facilitating numerical and combinatorial
calculations.

The sort of mathematics that arises in a computing context is not necessarily
what most people would consider to be mathematics at all. Its character may seem
more like that of ‘mere’ organization, symbol management, or data manipulation.
Can one really justify calling this subject, where one may not even mention
numbers, mathematics? 1t is quite true that the mathematics required for comput-
ing is not the classical mathematics of Newton and Leibniz. But mathematics is
much more than that, and in its role of searching out patterns, treating them
systematically and rigorously, passing from the particular to the general, is bound
to adapt to changing circumstances. The particular discipline which more than any
other has come into its own as a result of this change of emphasis is mathematical
logic, which now has a similar status in computer science to that of classical
mathematics in newtonian physics.

Mathematics is a fascinating and significant subject in its own right which,
irrespective of any applications, deserves attention from anyone wishing to
understand the world we live in, and the complicated and beautiful patterns it
contains. The fact that mathematics is also useful can be regarded as a genuine
bonus, though it is perhaps an inevitable consequence of its deep underlying logic
and elegance. I would like to feel that, although many who read this book may do
so because they have to, they will nevertheless obtain some pleasure, and that
mathematics will be seen as it should be: not as a complicated and incomprehens-
ible collection of irrelevant abstractions, but as a living and powerful subject, one
full of delight and interest for those who study it. §
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Readership and prerequisites

The principal intended readership for the book are first- or second-year computer
science undergraduates at freshman or sophomore level. Much of the material here
is appropriate for courses in discrete mathematics and theoretical computer science
at this stage, in particular most of the first eight chapters. Other topics have been
included which certainly come under the heading of mathematics suitable for a
computer science readership, but which are pitched at a slightly higher level.
Whereas some of these can, one hopes, be tackled by first-year students, many are
normally taught at a later stage, in the second or even third year (junior level).
This, it is hoped, will make the book more widely useful, and will make it possible
for an enthusiastic student to see where the more basic work leads, while still being
sufficiently approachable for relative beginners. A small number of sections have
been ‘starred’, to indicate that they are rather more advanced than the main part of
the text, and they are not directly used in what follows them. Careful note has
been taken of the ACM recommendations for a discrete mathematics syllabus; for
example, the syllabuses proposed by Bertziss (1987) are fully covered by what is
included in the book.

The presentation is intended to be essentially self-contained: it should in
principle be possible for a reader with very little mathematical background to
understand almost everything. In particular, it should be emphasized that a
knowledge of the differential and integral calculus is not a prerequisite. They are
referred to and used occasionally, but their role is relatively minor, and the one or
two sections where they are needed can be omitted without great detriment. (The
differential and integral calculus are not to be confused with the propositional,
predicate, and lambda calculus, which most certainly do occur, and are very
important.)

Some mathematical maturity is nevertheless desirable, particularly when coping
with the more advanced material in the later chapters. Throughout the text,
knowledge of basic high-school algebra will be assumed, and some knowledge of
programming concepts would be a help. To assist readers who are less familiar with
the necessary background material, I have included in the second edition a short
appendix as revision of some basic algebra, polynomials, factorization, rational
functions, and complex numbers, with some exercises. Where sections of
algorithms or ‘programs’ have been included, the notation should be clear; the
style adopted is mostly that of a PASCAL-like language.

Outline of topics

The first chapter begins at the beginning with the basic data types of computer
science (or for that matter, mathematics), which are examined in some detail. They
are the natural numbers, integers, rationals, reals, and radix systems. Pride of place
is given to mathematical induction, one of the most important topics for a
computer scientist, in view of looping and recursion in computer prograrms, and
there is some discussion of simple correctness proofs. It is here that the central
notion of an algorithm is first described.
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Mathematical logic is the cornerstone of contemporary computer science. This
may be familiar to the student as applied to switching circuits, but the impact of
logic goes much deeper than this. Computer programs are themselves ‘formal
proofs’ in a sense (or at least formal computations) so their construction and
verification is, or is akin to, formal logical manipulation. Two chapters are devoted
to logic, Chapters 2 and 7. In Chapter 2 we introduce the two main kinds of
language considered, propositional logic, where the basic (atomic) building blocks
are ‘propositions’ linked by the connectives ‘and’, ‘or’, ‘not’, and ‘if...then...’,
and first-order predicate logic, where variables which are intended to range over a
possible domain of interpretation may be quantified as ‘there exists’ or ‘for all’.
This chapter includes some familiar computing applications, as well as explaining
how to write appropriate sentences of natural language in a formal way.

Topics which are more central in mainstream logic are presented in Chapter 7,
principally the notion of a formal proof, here given using a natural deduction
system, and the links with interpretations (the semantics) via the completeness
theorem for propositional or predicate logic are explained. These ideas are also
central in the study of programming languages, where one can consider the
formal, syntactic aspects, as well as the meaning of a program, either how it is
intended to behave (its operational semantics), or what it is intended to stand for
(its denotational semantics). As an illustration of these connections, some intro-
ductory material on logic programming is given in Section 7.3. Topics allied to
logic, but which are introduced before Chapter 7, are boolean algebras and
complete lattices (the latter used in denotational semantics). These are covered in
Chapter 6, together with other important notions associated with orderings of
various kinds, the most pervasive of which is that of a tree.

In Chapter 3 the modern language for handling sets, relations, and functions is
introduced. The view is taken that programs are more or less the same as functions,
or at any rate that functions are realized by implementations of programs.

Chapter 4 serves principally as an introduction for other parts of the book.
Linear algebra occurs widely in applications, for example in combinatorics, graphs,
and coding theory. The last two sections of the chapter treat groups and
semigroups, also topics of wide applicability. Only the basics are covered here,
but enough of a grounding is given to meet the requirements of later chapters.

Combinatorics, which is discussed in Chapter §, is an attractive and popular
part of the subject, and one could say that this is what really constitutes the core of
discrete mathematics. This chapter also includes a section on probability (the ideas
and arguments are very closely related to those of combinatorics) and one on the
solution of difference equations. Difference equations are required for analysis of
algorithmic complexity, and since computers are frequently used in the numerical
solution of differential equations via their discretized versions (which are differ-
ence equations), there is a dual purpose in including this material.

A central topic in discrete mathematics is graph theory, and this is covered in
Chapter 8. The language of graph theory allows us to visualize combinatorial
problems diagramaticaily, and many issues which arise in computing correspond
to geometrical features of the resulting graphs or digraphs, for instance connected-
ness and accessibility, colourings of vertices, and the existence of paths of various
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sorts. There is space here to include only an introduction to the subject, but the
topics chosen are ones which form strong links with those in the rest of the book,
such as trees, logic, and algorithms.

The final three chapters examine slightly more advanced topics, which never-
theless are of central importance. Ever since Alan Turing gave his analysis of the
notion of computability in 1936, even before the first electronic digital computer
had been built, the study of formal machines of various sorts has proved an active
area, and has provided the appropriate theoretical background for the study of the
capabilities and limitations of real machines. Chapter 9 studies finite automata and
the corresponding regular languages they recognize, and then looks at the wider
notions of computability on register machines and Turing machines (which turn
out to be equivalent). The theme of feasibility - the question not only of whether
something can be calculated, but also of how long it might take - is taken up in
Chapter 10. Apart from some analysis of well-known arithmetical algorithms,
methods for sorting and searching are described. The most important topic of
Chapter 10, however, is that of NP-completeness, associated as it is with so many
combinatorial problems arising in practice, for instance in operational research.

Chapter 11, on coding theory, is devoted mainly to error-correcting codes
(cryptography is also mentioned at the end of Chapter 10). The modern theory of
error-correcting codes, apart from its evident utility, provides a striking illustration
of the application of algebraic and combinatorial methods in computer science.
Specific topics covered are linear block codes, variable-length and Huffman codes,
and the chapter concludes with an introduction to information theory, which
among other things studies the limitations on the amount of information it is
possible to convey over a channel.

Structure and use

The pedagogical approach used is fairly standard. I have attempted to aim above all
for clarity and an interesting and relevant choice of material. The chapters are
arranged in sections with their own introductions and exercises. There are over 700
exercises in all, and within each section these have been arranged as far as possible
in increasing order of difficulty, rather than in order of presentation of the topics.
Answers to selected exercises are provided. Answers to the remaining exercises are
available in a Solutions Manual from Addison Wesley Longman. There is a summary
at the end of each chapter. Terminology is for the most part standard and special
symbols have been listed at the beginning of the book. In order to distinguish
clearly between logical symbols and the corresponding operations in a boolean
algebra, I have used A, v, and - (not) for the former, and A, v, and — for the latter.
1 have used hcf (highest common factor) as opposed to gcd (greatest common
divisor), and this and other usages are clearly indicated in the index and list of
symbols.

The reader is of course at liberty to read (some or all of) the chapters in any
order he or she wishes. Although I have adopted what seems to me a sensible and
logical development of the material, many other ways of organizing the work
could also have been followed. It is certainly possible to take things in other orders
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or to treat topics selectively. The principal pattern of chapter dependences is
shown in the diagram, with strong and weak links indicated, though there are
occasional other cross-references between chapters not shown as connected. Weak
dependences typically occur where only a section of an earlier chapter is a
prerequisite for the later one; this makes for greater flexibility than is indicated
in the diagram. For instance, the only essential dependence of Chapter 5 on
Chapter 4 comes about in the section on permutation groups (Section §.2), and it
is possible to understand the rest of Chapter 5 on the basis of the first three
chapters alone. I illustrate four possible courses which could be built from parts of
the material covered:

1. Introductory course on discrete mathematics: Sections 1, 2.1, 3.1-3.3, 4.1-4.5,
5.1-5.2, 6.1-6.2, 8, and 10.1-10.2.

2. Course on the foundations of computability and logic: Sections 1, 2, 3, 4.6, 6,
7,and 9.

3. Course on algebraic methods in computer science: Sections 1, 3, 4, 5.2, 6.3,
and 11.

4. Course on discrete mathematics, with emphasis on algorithms: Sections 1, 2,1,
3,5 8,9 and 10.

One could envisage other selections. Also, if students had the necessary prior
knowledge, it would be possible to omit some of the introductory material in
planning a more advanced course. Best of all though is to use the whole book.
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