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Introduction

This book focuses on catalysts that have
been developed as hybrid materials, com-
posites, and organocatalysts. While research
in these areas has been known for a while,
the volume of research in these areas in
recent years has skyrocketed. Reasons for
these emerging areas of research are that
simple catalytic systems are not often ade-
quate to solve all of the required performance
characteristics of a material as well as the
ability of various phases to provide multiple
functions and at times synergetic effects.

The development of supporting homoge-
neous catalysts on supports to make hetero-
geneous systems that have the inherent
advantages of homogeneous systems like
high activity and selectivity is making major
leaps in recent years. Thermocatalytic steam
cracking is an area where hybrid catalysts
are being used for the selective production of
hydrocarbons such as ethylene. Hybrid cata-
lysts are also being developed for applica-
tions in olefin metathesis and polymerization
reactions. Some specific reactions like spill-
over for oxygen and hydrogen are important
in a variety of areas and hybrid materials are
often the only way to go to produce excellent
activity and stability. Immobilizing transi-
tion metal complexes on inorganic or hybrid
matrices are summarized.

Catalytic processes that use hybrids,
composites, and organocatalysts are dis-
cussed as a separate chapter for perspective.
Organocatalysts involving hybrid gold
materials are discussed. Encapsulated poly-
oxometalates are discussed. The ability to

support organocatalysts and their regenera-
tion is another area being developed. Carbon-
based catalysts are the focus of another
chapter. Environmental concerns are impor-
tant with these materials and the stable and
active class of environmentally friendly alu-
minosilicate materials, zeolites, has seen con-
siderable numbers of applications. These
materials are often combined with other
materials to improve mechanical strength
and as such could be considered composites.
Similar materials that are homogeneous such
as the silsesquioxanes are also discussed in a
separate chapter. Other composite materials
produced by supporting noble metals on sil-
ica are also discussed.

While these three different systems appear
to be markedly different, clearly there are
similarities in the approaches that are being
used to study hybrid, composite, and organo-
catalyst materials. Some of these authors are
proposing various combinations of these
three different materials in order to improve
the rates of reaction and selectivities.
Characterization of such complex systems is
a major challenge and is touched upon by
various authors.
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Hybrid Catalysts for Olefin
Metathesis and Related

Polymerizations

Hynek Balcar and Wieslaw J. Roth

J. Heyrovsky Institute of Physical Chemistry of the Academy of Sciences of the
Czech Republic, Dolejskova 3, 182 23 Prague 8, Czech Republic

1.1 INTRODUCTION

As a hybrid catalyst we shall understand in this chapter a combination of a transition
metal organometallic catalyst with inorganic supporting material. The reason for supporting
organometallic catalysts on suitable supports lies in the expectation of combining advantages
of homogeneous and heterogeneous catalysis. Homogeneous organometallic catalysts usu-
ally exhibit high activity and especially high selectivity (including stereoselectivity), which in
addition can be controlled by designed alterations in metal coordination sphere. On the other
hand, heterogeneous catalysts have indisputable advantage despite their less controllable
character: (i) their heterogeneity allows easy separation of catalyst from reaction mixtures
(with possible catalyst recovering or even direct reusing) and (ii) these catalysts can be used
in flow reaction systems.

The combination of the mentioned qualities is especially valuable when the transition metal
catalysts are applied in fine chemical synthesis. In many cases, especially if the product is
designed for medical, cosmetics, food processing, and similar applications, strict limits for the
content of catalyst residues (especially transition metals) in products must be obeyed.
Heterogeneous catalysts may directly afford a product with low metal content thus avoiding
tedious and expensive purification procedures. In addition, the possibility of catalyst reuse is
very important, because transition metal organometallic catalysts are usually quite expensive.

The immobilization of transition metal coordination and organometallic compounds on
solid supports has attracted interests from the early 1970s [1-9]. Many hybrid catalysts were
developed and tested for various chemical transformations such as hydrogenations,

Hybrid Materials, Composites, and Organocatalysts 1 © 2013 Elsevier B.V. All rights reserved.
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2 1. HYBRID CATALYSTS FOR OLEFIN METATHESIS AND RELATED POLYMERIZATIONS

hydroformylations, hydrosilylations, epoxidations, and C—C coupling reactions. Recently, the
effort in this field has been stimulated in response to practical demands. Moreover, the
advances in spectroscopic techniques (IR, Raman, solid-state NMR, XPS) allow nowadays
detailed characterization of organometallic compounds on solid surfaces. The achievements in
contemporary surface organometallic chemistry offer opportunities for deep understanding
of processes on catalyst surface with relevance to the catalyst activity and selectivity [10,11].

Although insoluble organic polymers can be used as catalyst supports [12], the inorganic
material such as silica, alumina, and similar oxides seems to be generally more advantageous
because of (i) higher thermal stability and (ii) preservation of pore characteristics due to resis-
tance to swelling by solvents. Modern inorganic supports such as zeolites, mesoporous
molecular sieves, and mesoporous organized alumina possess additional outstanding prop-
erties—regular porosity and high surface area [13]. Several strategies have been developed
for the immobilization of organometallic catalysts on these supports. With respect to the char-
acter of the bond between an organometallic compound and support they can be divided into
the following categories: (i) immobilization by sorption (physi- and chemisorption), (ii) for-
mation of a covalent bond between organometallic compounds and support surface atoms,
(iii) immobilization via ionic interactions, and (iv) encapsulation of organometallic com-
pounds inside the support cavities (ship in the bottle approach). To minimize transition metal
leaching from the hybrid catalyst during catalytic reactions, strong bonds between organo-
metallic compounds and the support are desirable. From this point of view immobilization
via covalent bonding is preferred. However, as leaching depends on various reaction condi-
tions (temperature, reaction medium, etc.) non-covalent interactions may give rise to a stable
valuable hybrid catalyst in some cases.

Immobilization of an organometallic catalyst on the surface of a support may modify its
catalytic activity and /or selectivity. First, attachment usually represents a perturbation in the
metal coordination sphere. The accompanying electronic and steric changes may affect both
the activity and selectivity (positively or negatively depending on the individual cases).
Second, in contrast to homogeneous systems, diffusion phenomena may play an important
role in the case of hybrid catalysts. Slow diffusion of substrate molecules to the catalytically
active centers, and products in opposite direction, may seriously slow down the reaction rate
in comparison with corresponding catalysts in the homogeneous phase. This decrease has
been often observed and represents a main drawback of many hybrid catalysts designed up
to now. Third, immobilization can also affect catalyst stability (both in positive and negative
way). The positive effect of immobilization can be expected especially if the homogeneous
catalyst is deactivated in a bimolecular process.

1.2 IMMOBILIZATION OF OLEFIN METATHESIS
CATALYSTS ON SOLID SUPPORTS

1.2.1 Olefin Metathesis

Olefin metathesis belongs to a few fundamentally novel organic reactions discovered in
the last 50 years. Olefin metathesis entails splitting of a double bond between carbon atoms
and exchanging of the formed alkylidene fragments as described in Scheme 1.1. Since its
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SCHEME 1.1 Simple olefin metathesis. R;._,=H, alkyl, aryl.

discovery, olefin metathesis has been widely investigated resulting in many applications in
petrochemistry, polymer chemistry and synthesis of numerous drugs, natural products, and
biologically active compounds [14-16]. The importance of olefin metathesis was underscored
in 2005 by the Nobel Prize award to Yves Chauvin, Robert H. Grubbs, and Richard R. Schrock
“for the development of the metathesis method in organic synthesis.”

In fact, olefin metathesis is a family of reactions connected by the same mechanism and
principally the same catalysts (vide infra). In addition to the simple metathesis reaction of a
single alkene (Scheme 1.1), this family includes cross metathesis (CM) of two different alkenes
leading up to eight different products (Scheme 1.2), ring closing metathesis of dienes (RCM)
leading to the formation of cycloalkene ring (Scheme 1.3), acyclic diene metathesis (ADMET)
leading to oligomers and/or polymers (Scheme 1.4), and ring opening metathesis polymer-
ization (ROMP) of cycloalkenes leading to high molecular weight polymers (Scheme 1.5).
Moreover alkynes and enynes also undergo metathesis—alkyne metathesis of internal

R3 Rs / R3 R; Ry Ry R3 Rs
e < > D L SR
R4 R R4 Rg R? Rg R4 Res
R1 Ry Rj Rj Rs Rs R+ /R7

+ + -+ —

D e S
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SCHEME 1.2 Cross metathesis. R, s=H, alkyl, aryl.

-_——— ‘ ' -4 R'HC — CHR
N

RH C CHR

SCHEME 1.3 Ring closing metathesis of diene. R, R"=H, alkyl.

n :m: — :{:f-\:]: + (n-1) H,C=CH,

n

SCHEME 1.4 Acyclic diene metathesis of a-,w-diene.
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O —

n

SCHEME 1.5 Ring opening metathesis polymerization of cycloalkene.

2 Ri————R2 — R ——— R4 + R——Ro

SCHEME 1.6 Alkyne metathesis, R,,=alkyl.

R R R
R
o — wANA

SCHEME 1.7 Metathesis polymerization of 1-alkynes, R=alkyl, aryl.

|

SCHEME 1.8 Enyne metathesis.

alkynes (Scheme 1.6), metathesis polymerization of 1-alkynes (Scheme 1.7), and enyne
metathesis (Scheme 1.8).

1.2.2 Homogeneous Catalysts for Olefin Metathesis

The olefin metathesis catalysts are based almost exclusively on W, Mo, Re, and Ru com-
pounds. Initially, multicomponent homogeneous catalysts (e.g., WCl;+Me,Sn) were used.
The actual catalytic species were formed in the course of the reaction, however, the character
of these catalytically active species was not known. In 1971 Hérisson and Chauvin [17] pro-
posed the chain mechanism of olefin metathesis with metallocarbene complexes as the cata-
lytic species and metallacyclobutane as an intermediate (Scheme 1.9). This mechanism was
fully confirmed in subsequent years.

The discovery of the mechanism opened the way to a new generation of olefin metathesis
catalysts—stable carbene complexes of W, Mo, and Ru. In 1976, Fisher carbenes,
(CO);W=CPh(OMe) and (CO);sW=CPh,, were used [18,19]. However, their activity was very
limited. In late 1980s, Schrock et al. prepared high valent W and Mo carbenes (Figure 1.1),



