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Preface

Silicon is the material of choice of the multibillion semiconductor in-
dustry. Ongoing miniaturization of microelectronic devices drives critical
regions of integrated circuits ever closer to the place where the silicon ends
and another material begins, to the interfacial region. Performance and
reliability of electronic microelements depend more and more on the micro-
scopic quality of the interfaces and on the microscopic-scale quality of the
original Si surfaces. Suffice to say that as soon as in the first decade of the
coming millenium the customers will be offered microelectronic chips with
minimum features about hundred atoms long and a couple of atoms thick!
Small wonder that atomic-scale knowledge is gaining a commercial value.

Determination of the atomic structure and the chemical bonding at
semiconductor surfaces and interfaces is a demanding task. Advances in
the experimental and computational techniques make this task increasingly
managable. The work of physicists is assisted by dramatic improvements
in the performance of computers. Fruitful interaction between predictable
theories and reliable experiments has greatly influenced cur knowledge on
the intricated relationship between the behavior of individual atoms and the
behavior of mesoscopic and macroscopic objects. We are approaching the
ultimate practical goal of modern semiconductor surface research: efficient
usage of microscopic information in the control of semiconductor structure
and chemistry and, consequently, efficient control of technological processes
and design of optimal circuits and systems.

The main objective of this book is to give a comprehensive overview
of silicon surfaces and interfaces: what is known and unknown about them
from scientific point of view, what is their industrial role, what are the
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relations between applications and basic research, what are the most prob-
able directions of future developments. Since the scope is broad and the
volume small, I took care to avoid the danger that this presentation evolves
into an unreadable encyclopaedia accessible only to experts. In fact, there
is no particular reason to compile all the data; first, this has been done
many times before, and second, this would be a task for a large team. So
I decided to focus not on numbers and curves, but on problems. A reader
interested in more details is often asked to consult an easily available book
or a journal article.

Each technical chapter begins with a general overview, intended to
be understandable to any person with some basic knowledge on solid state
physics. Individual Sections begin with overviews as well, but these have a
more specialized character. Subsections deal with their subjects much more
thoroughly and they do not avoid controversial or speculative issues. We
have used the advantage of the storyteller and limited the scope of material
covered in detail to the topics we found either most interesting or of a major
practical importance.

Practical importance is likely to invoke scientific interest. But many
subjects which are scientifically interesting have no technological relevance.
When combined with lame budgets of many govermnents, an unfortunate
but far-reaching consequence of this trivial fact may be that science will
be commercialized. Let us hope that scientists will eventually contain this
danger by recognizing the problem, by some self-control, and by occasional
refreshing exercises in broader, even philosophically oriented thinking.

Acknowledgments. This book would not appear if we did not re-
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encouragement, comments, and discussions, and to Piotr Bogustawski, Mar-
ilia J. Caldas, Emily A. Carter, Anne Chaka, Ewa Dabrowska, Steven
C. Ervin, Thomas Fauster, Kristin Fichthorn, Peter Gaworzewski, Frank
Herzel, Dietmar Kriiger, Max G. Lagally, Juin J. Liou, John E. Northrup,
Eckhard Pehlke, Wolfgang Ranke, Catherine Stampfl, Brian S. Swartzen-
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