Predicate Calculus and
Program Semantics

BIRREMEFIEN (%)

Edsger W. Dijkstra Carel S. Scholten

Predicate Calculus and
Program Semantics

Springer-Verlag
World Publishing Corp

F
Edsger W. Dijkstra Carel S. Schoiten "

University of Texas at Austin Klein Paradys 4
Austin, TX 78712-1111 7361 TD Beekbergen
USA The Netherlands

Series Editor
1 4

David Gries

Department of Computer Science
Cornell University

Ithaca, NY 14853

USA

Library of Congress Cataloging-in-Publication Data
Dijkstra, Edsger Wybe. :
Predicate calculus and program semantics / Edsger W. Dijkstra,
Carel S. Scholten.
p. cm. — (Texts and monographs in computer science)
ISBN 0-387-96957-8 (alk . paper)
1. Predicate calculus. 2. Programming languages (Electronic
computers)—Semantics. [. Scholten, Carel S. 1. Title.

Il Series.
QA9.35.D55 1989
511.3—dc20 89-11540

Index prepared by Jim Farned of The Information Bank, Summetland, California.

© 1990 by Springer-Verlag New York Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer-Verlag, 175 Fifth Avenue, New York. NY 10010, USA),
except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with
any form of information storage and retrieval, electronic adaptation, computer software. or by similar
or dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names. trade names, trademarks. etc. in this publication, even if the
former are not especially identified, is not to be taken as a sign that such names. as understood by
the Trade Marks and Merchandise Marks Act. may accordingly be used freely by anyone.

Reprinted by World Publishing Corporation, Beijing, 1991
for distribution and sale in The People's Republic of China only
ISBN 7-3062-1044-4

ISBN 0-387-96957-8 Springer-Verlag New York Berlin Heidelberg
ISBN 3-540-96957-8 Springer-Verlag Berlin Heidelberg New York

CHAPTER 0
Preface

This booklet presents a reasonably self-contained theory of predicate trans-
former semantics. Predicate transformers were introduced by one of us
(EWD) as a means for defining programming language semantics in a way
that would directly support the systematic development of programs from
their formal specifications.

They met their original goal, but as time went on and program derivation
became a more and more formal activity, their informal introduction and the
fact that many of their properties had never been proved became more and
more unsatisfactory. And so did the original exclusion of unbounded
nondeterminacy. In 1982 we started to remedy these shortcomings. This little
monograph is a result of that work. -

A possible —and even likely— criticism is that anyone sufficiently versed
in lattice theory can easily derive all of our results himself. That criticism
would be correct but somewhat beside the point. The first remark is that the
average book on lattice theory is several times fatter (and probably less self-
contained) than this booklet. The second remark is that the predicate
transformer semantics provided only one of the reasons for going through the
pains of publication.

Probably conditioned by years of formal program derivation, we ap-
proached the task of designing the theory we needed as an exercise in formal
mathchatics, little suspecting that we were heading for a few of the most
pleasant surprises in our professional lives. After a few notational adaptations
of the predicate calculus —so as to make it more geared to our manipulative
needs— and the adoption of a carefully designed, strict format for our proofs,
we found ourselves in possession of a tool that surpassed our wildest
expectations. As we got used to it, it became an absolute delight to work with.

1

vi 0. Preface

The first pleasant —and very encouraging!— experience was the killing
of the myth that formal proofs are of necessity long, tedious, laborious, error-
prone, and what-have-you. On the contrary, our proofs turned out to be
short and simple to check, carried out —as they are— in straightforward
manipulations from a modest repertoire.
~.* For quite a while, each new and surprisingly effective proof was a source of
delight and excitemhent, although it was intellectually not fully satisfactory
that each of them was a well-crafted, but isolated, piece of ingenuity. We had
our second very pleasant surprise with the deyelopment of heuristics from
which most of the arguments emerged most smoothly (almost according to
the principle “There is really only one thing one can do.”). The heuristics
turned the design of beautiful, formal proofs into an eminently teachable
subject.

This experience opened our eyes for further virtues of presenting formal
proofs in a strict format. Proofs thus become formal texts meeting precise
consistency criteria. The advantage of this transition is traditionally viewed
as a gain in trustworthiness: given the formal text, there need not be an
argument whether the proposed proof is a proof or not since it can be
checked objectively whether the text meets the criteria. (This is the aspect
stressed in mechanical proof verification.) A further advantage of the
transition is that it enables a meaningful comparison between alternative
proofs of the same theorem, viz., by comparing the texts. The final advantage
of the transition is the much greater homogeneity it introduces into the task
of proof design, a task that becomes a challenge in text manipulation that is
more or less independent of what the theorem was about. It is this greater
homogeneity that opens the way for heuristics that are more generally
applicable.

In the course of the process we profoundly changed our ways of doing
mathematics, of teaching it, and of teaching how to do it. Consequently, this
booklet is probably as much about our new appreciation of the mathematical
activity as it is about programming language semantics. It is certainly this
second aspect of the booklet that has induced us to go through the
aforementioned pains of publication. It has taken us some time to muster the
courage to admit this, for a revision of mathematical methodology seemed at
first a rather presumptuous undertaking. As time went on, however, we were
forced to conclude that the formal techniques we were trying out had never
been given a fair chance, the evidence being the repeated observation that
most mathematicians lack the tools needed for the skilful manipulation of
logical formulae. We gave them a fair chance; the reader is invited to share
our delight.

0. Preface vii

Before the reader embarks on the study of the material proper of this
booklet, we would like to give him some advice on reading it.

The most important recommendation is to remember all the time that this
is not a treatise on logic, or on the foundations of mathematics. This warning
is all the more necessary since superficially it might look like one: it has
logical'symbols all over the place and starts with a long introduction about
notation. The frequent occurrence of logical symbols has a simple, pragmatic
explanation: we use them so extensively because they are so well-suited for
our job. The long introduction on notation has an equally simple, pragmatic
explanation: some new notation had to be introduced and, more importantly,
existing notations had to be adapted to our manipulative needs. Our free use
of the logical connectives before their formal introduction stresses once more
that this is not a book on logic. In short, the logician is perfectly free to be
taken aback by our naive refusal to make some of his cherished distinctions.

Our second recommendation to the reader is to approach this little
monograph with an open mind and not to get alarmed whenever it deviates
from the traditions in which he happens to hjxe been educated. In particular,
he should not equate convenience with cdnvention. Doing arithmetic in
Arabic numerals is objectively simpler —i.e., more convenient— than doing
it in Roman numerals. The transition from verbal arguments appealing to
“intuition” or “common sense” to calculational reasoning admits also in that
area an equally objective notion of simplicity —i.e., of convenience— . We
know from experience that for readers from some cultures it will be hard to
accept that we leave all sorts of (philosophical or psychological) questions
unanswered; the only answer we can offer is that we are from a pragmatlc‘
culture that deals with such questions by not raising them.

Our third recommendation to the reader is really a request, viz., to honour
this booklet’s brevity by reading it slowly. Our texts have a tendency of being
misleadingly smooth and unusually compact. When, at the end, you wonder
“Was this all?”, we shall answer “Yes, this was all. And we hope you travelled
long and far.”.

The above was written a year ago, before we had started on our
manuscript. It reflects our expectations. Now, 12 months and 420 handwrit-
ten pages later, we can look back on what we have actually done besides
breaking in a new fountain pen. Needless to say, the major discrepancy
between dream and reality has been the size: had we foreseen a 420-page
manuscript, we would not have referred to a “booklet”. Our only excuse is
that, at the time, we had not firmly decided yet to include the material now
covered in the last three chapters.

Vil 0. Preface

The trouble with writing a book is that it takes time and that, consequent-
ly, at the time of completion, authors are older —and perhaps wiser— than
when they started. Our fate has been no exception: there are several things we
would have done differently had we written them a year later. (For instance,
concerns about punctuality would have been more concentrated and our
treatment of the implication in Chapter 5 might have relied less heavily on the
“Little Theory™) With the exception of a complete rewriting of Chapter. 1,
which at the end was no longer a proper introduction to the rest of the book,
we have, however, abstained from any major overhauls of the manuscript.
They would not have solved the problem that authors may continue to grow
and that, consequently, texts have an unavoidable tendency to be more or less
dated. It is in this connection that we would like to include a general
disclaimer: though our enthusiasm might sometimes suggest differently, we
nowhere pretend that our work leaves no room for improvement, simplifica-
tion, or meaningful generalization. (We did, for instance, not explore what
meaningful partial orders on programs could be introduced.)

Apart from exceeding the originally envisaged size, we have remained
faithful to our original intentions, in particular to our intention of writing a
monograph reflecting the current state of our art. Though we have success-
fully covered most of its material in graduate courses at both sides of the
Atlantic Ocean, this book should not be regarded (or judged) as a textbook,
because it was not intended that way. (Hence, for instance, the total absence
of exercises.) There were several reasons for not wishing to write a textbook.
A practical reason was that different educational systems promote totally
different perceptions of student needs to be catered for in an “acceptable”
textbook. and that we did not want to waste our time trying to meet all sorts
of conflicting requirements. A more fundamental reason was that we think
the whole notion of “a textbook tailored to student needs” certainly at
graduate level much too condescending. At that stage there is nothing wrong
with confronting students with material for which they have not been
adequately prepared, for how else are they going to discover and to learn how
to cope with the unavoidable gaps in their education? So, though we know
that this book can provide the underlying material for a fascinating and
highly instructive course, it is not a textbook and its “target audience” is just
“To whom it may concern”.

We have, of course, our idea about whom it concerns: the mathematically
inclined computing scientists and the mathematicians with methodological
and formal interests. We most sincerely hope to reach them, to thrill them,
and to inspire them to improve their own work or ours. Honesty compels us
to add to this wish that there is one possible —and, alas, likely—
“improvement” we are not waiting for, viz., the translation of our theory into
set-theoretical terminology —by interpreting predicates as characteristic

0. Preface ix

functions of subsets of states— so as to make it all more familiar. Littie is so
regrettable as to see one’s work “improved upon” by the introdugtion of
traditional complications one has been very careful to avoid. Hybrid argu-
ments, partly conducted inferms of a formal system and partly conducted in
terms of a specific model for that formal system, present a typical example of
such confusing complications. In this connection we would like to stress that
the existence of individual machine states enters the picture only when our .
theory is applied to program semantics, i.e., to an environment in which the
individual machine state is a meanigful concept; the theory itself does not
need a postulate of the existence of individual states and, therefore, should
not be cluttered by their introduction.

* *
*

It is a pleasure to mention here our great appreciation for our former
employers, Burroughs Corporation and N.V. Philips, respectively, which
loyally supported us when we embarked in 1982 on the investigations
reported in this volume.

More profound gratitude than to anyone else is due to W. H. J. Feijen and
A.J. M. van Gasteren who were at that time close collaborators of one of us
(EWD). They did not only witness from close quarters our first formal efforts
at establishing a theory of predicate transformer semantics, they can trace
their contributions and their influence all through this book. Feijen is
essentially the inventor of our proof format; he took the decision to write the
hint between the formulae connected by it and he was the one who insisted on
the discipline of allotting at least a full line to each hint. (He probably realized
that this insistence was necessary for establishing a tradition in which the
hints given would be as explicit as he wanted them to be.) Van Gasteren
provided the rationale for this invention (and also for the invention of the
square brackets to denote the “everywhere” operator): her earlier explora-
tions'had convinced us that the type of brevity thus obtained is indispensable.
Later she insisted on exorcizing mathematical rabbits —pulled out of a hat—
and provided the “follows from” operator as one of the means to that end.

Furthermore, we thank all colleagues, students, and members of the
Tuesday Afternoon Clubs in Eindhoven and Austin, whose reactions to the
material shown have helped in shaping this book. We are particularly
grateful for the more detailed comments that Jayadev Misra and Lincoln A.
Wallen gave on the almost final version of the manuscript; the decision to
rewrite Chapter 1 has been triggered by their comments.

Finally, we express our gratitude to W. H. J. Feijen, David Gries, and
Gerhard Rosshach of Springer-Verlag, New York. In their offers of assistance

X 0. Preface

in the final stages of book production, each of them has gone beyond the call
of duty.

July 1988
Austin, TX, USA Edsger W. Dijkstrz
Beekbergen, The Netherlands Carel S. Scholten

Contents

— —
[\

XTI Nh W~

Preface

On structures

On substitution and renlacement
On functions and equality

On our proof format

The calculus of boolean structures
Some properties of predicate transf?rmers
Semantics of straight-linc programs

Equations in predicates and their extleme solutions
Semartics of repetitions
Operational considerations
Converse predicate transformers
The strongest postcondition

Index

L
17
21
30
81
121
147
170
190
201
209

216

CHAPTER 1
On structures

The proofs in this book are much more calculational than we were used to
only a few years ago. As we shall explain later, the theorems are (or could be)
formulated as boolean expressions, for which, in principle, true and false
are the possible values; the proofs consist in calculations evaluating these
boolean expressions to true . We shall return to this later, focussing, for the
time being, our attention on some of the notational consequences of this
approach.

The advantages of such a calculational style are a fairly homogeneous
proof format and the possibility of obtaining brevity without committing the
“sin of omission”, i.e., making such big leaps in the argument that the reader
is left wondering how to justify them. In fact, all our steps are simple and they
are taken from a repertoire so small that the reader can familiarize himself
with it as we go along. We could, however, harvest these advantages of
calculation only by adoption of carefully chosen notational conventions that
tailored our formulae to our manipulative needs. (Among those needs we
mention nonambiguity, brevity, and not being forced to make needless
distinctions.)

One of our notational conventions may strike the reader as a gross
overloading of all sorts of familiar operators: for instance, we apply the
operators from familiar two-valued logic to operands that in some admissible
models may take on uncountably many distinct values. The justification for
such a notational convention is a major purpose of this introductory chapter;
we feel that we owe the reader such a justification, all the more so because in
the world of programming the dangers of overloading are well known.

2 1. On structures

We can get some inspiration —and, if we feel the need for it, even some
reassurance— from the field of physics. Every classical physicist, for instance,
is thoroughly familiar, be it in his own way, with the notion of a vector in
three-dimensional Euclidean space, independently of the question of whether
the vector is a displacement, a velocity, a force, an acceleration or a
component of the electromagnetic field. Also, he is equally familiar with the
sum v+ w of two vectors v and w . But that sum raises a question, in
particular if one adopts the view —as some physicists do— that the
variables stand for the physical quantities themselves and not for their
measure in some units. The question is, how many different vector additions
are used by the physicist: is the sum of two velocities the same sort of sum as
the sum of two forces? Well, the answer seems negative in the sense that no
physicist that is well in his mind will ever add a velocity to a force.

Given the fact that in some way we can distinguish those different sorts of
additions, we could feel tempted or intellectually obliged to introduce as
many different addition symbols as we can distinguish additions, say +, for
the addition of velocities, +, for the addition of accelerations, etc. In a purist
way, this would be very correct, but we all know that the physical community
has decided against it: it has decided that a single symbol for addition will do.

When challenged to defend that decision, the physicist will give the
following reasons. Firstly, the purist convention would complicate manipula-
tion: the single rule that differentiation distributes over addition, i.e.,

ii—(+w)—é£+dw
"’ T dt | dt

would emergy in many forms, such as

4oy, dv
ac T T g Ty ’

in each of which the distribution law has practically been destroyed.
Secondly, the physicist would point out that in every physical context the
subscripts of the addition symbols are really redundant because they foliow
from the type of vectors added. And, finally, he would point out that the use
of a single addition symbol never seduces him to add a velocity to a force
since the incentive to do so never arises. The defence is purely pragmatic.

The physicist goes further. With respect to a point mass » | he introduces
a gravitational potential G , which in some considerations is treated as a
single physical object, for instance, in the sentence “the dimension of the
gravitational potential is length?/time? ™. Also potentials can be “added” by
the physicist: a system consisting of two point masses, more precisely of point
‘mass m0 with gravitational potential G0 and a point mass ml with

1. On strictures 3

gravitational potential G1 , gives rise to a gravitational potential GO + G1 .
What kind of addition is that? 3

L

A possible answer is to shrug one’s shoulders and to say “Mostly the usual
one: it is symmetric and associative and there is a zero potential 0 satisfying
G + 0 = G for any potential G . Furthermore, it has some specia) prop-
erties in connection with other operators that are specific for potentials, e.g.,
the nabla operator V distributes over it:

V(GO + G1) = VGO + VGI s

but that is really another story that more belongs to the nabla operator to be
introduced later.”.

The helpful physicist will certainly give you a much more detailed answer:
he will tell you that a potential assigns a scalar value to each point of three-
dimensional space and, conversely, is fully determined by those values —i.e.,
two potentials are the same potential if and only if they are everywhere
equal— ; he will furthermore tell you that, by definition, in any point of
three-dimensional space, the value of GO + G1 equals the sum of the values
of GO and G1 in that point. By the convention of “point-wise addition” he
thus defines the addition of potentials in terms of addition of real numbers.

Remark In the same vein he will define the nabla operator as a differentiation
operator. That the nabla distributes over addition then emerges as a theorem.
(End of Remark.)

Once we have chosen a coordinate system for the three-dimensional
Euclidean space, say three orthogonal coordinates x , y , z , another view
of a potential presents itself. We then have the option of viewing the potential
as an expression in the coordinates, i.c., we equate for some function g ,

= g(x,y,2) ,
where the function is such that, for any triple (a,6,c) , the value of g.(a,b.c)
equals the value of the potential G at the point that has that triple (a,6,c) as
its coordinates.

This last view gives a very familiar interpretation to the plus sign in
GO + G1 : the latter formula now stands for the expression

90.(x,3,2) + gl.(x,y,2) ,

i.e., our plus sign just adds two expressions to form a new expression that is
their sum.

This view thus allows a very familiar interpretation for the plus sign in
GO + G1 ; the price we have to pay for that convenience is the introduction of

4 1. On structures

names, like GO and G1 , that stand for expressions in, say, x , y , apd z
but, being just names, do not state that dependence explicitly (as a functional
notation like g.(x,y,z) would have done).

Modern mathematical usage freely introduces names for all sorts of
mathematical objects such as sets, points, lines, functions, relations, and
alphabets, but is reluctant to introduce a name for an expression in a number
of variables. There is a very good reason for that reluctance: because of their
hidden dependence on some variables, those names may become quite tricky
to manipulate (An example of how tricky it may become is provided by the
names “yesterday”, “today”, and “tomorrow”, which admit sentences such
as “Tomorrow, today will be yesterday.”.)

When physicists call a potential “G” , they do precisely what, for good
reasons, the mathematicians are very reluctant to do; they adopt a mathe-
matically dubious convention. The reason why they get away with it —at
least most of the time— is probably that three-dimensional space (plus time)
is the standard context in which almost all of classical physics is to be
understood. With that understanding, any notation —like g(x,y,z) — that
indicates that dependence explicitly is unnecessanly lengthy.

We mentioned the physicists because we are partly in the same position as
they are. For the sake of coping with programming language semantics we -
shall develop a theory, and we may seem to have adopted the “dubious
convention” of the physicists in the sense that, when the theory is applied to
programming language semantics, things that were denoted by a name in our
theory stand in the application for expressions in programming variables.

Remark Once we have chosen a set of Cartesian coorglinates for the three-
dimensional space, we have introduced a one-ta-one correspondénce between
the points of space and the triples of coordinate values. For programs, this
has given rise to the metaphor that is known as “the state space”. For a
program that operates on nr variables, the corresponding “state space” is
visualized as an n-dimensional space with the n variables of the program as
n Cartesian coordinates. Thus the metaphor introduces a one-to-one
correspondence between the points in state space and all combinations of -
values for the n variables. Since each combination of these values
corresponds to a state of the store consistiﬂg of those variables, there is a one-
to-one correspondence between the states of the store and the points in state
space; hence the latter’s name. It is a well-established metaphot, and we shall
use it freely. Instead of “for any combination of values of the program
variables” we often say “for any point in state space”, or “everywhere in state
space” or “everywhere” for short. Another benefit of the metaphor is that we
can describe the sequence of states corresponding to a computation as a
“path” through state space, which is traversed by that computation. Further-

1. On structures 5

more, the metaphor allows us to view certain program transformations (in
which program variables are replaced by others) as coordinate transforma-

tions.

In short, the notion of state space has its use. The reader that encounters
the term for the first time should realize that this use of the term “space”
represents a considerable generalization of normal three-dimensional space:
there is in general nothing three-dimensional about a state space, its
coordinates are rarely real, and Euclidean distance between two states is not
a meaningful concept (not even if the program variables are of type integer
and the state space can be viewed as consisting of grid points). (End of
Remark.)

Upon closer inspection it will transpire that our convention is not half as
dubious as it may appear at first sight. Hidden dependence on a variable
makes manipulation tricky only in contexts in which the variable occurs
explicitly as well. We are safe in the sense that our theory is developed
independently of its application, and that it is only in the application that
names occurring in the theory are made to stand for expressions in program
variables. We beg the reader to remember that the state space is not an
intrinsic ingredient of our theory and that it only enters the picture when we
apply our theory to programming language semantics.

In fact we go further and urge the reader to try to read the formulae of our
theory without interpreting names as expressions in the coordinates of some
state space. Such an interpretation is not only not helpful, because it is
confusing, but is even dangerous, because expressions on a state space
provide an overspecific model for what our theory is about, and as a result
the interpretation might inadvertently import relations that hold for the
specific model but do not belong to the theory.

Because the theory is to be understood independently of its application to
programming language semantics it would not do to call those names in the
theory variables of type “expression”. We need another, less committing,
term. After quite a few experiments and considerable hesitation, we have
decided to call them variables of type “structure”. So, in our theory we shall
use names to stand for “structures”.

Our notion of a “structure” is an abstraction of expressions in program
variables in the sense that the state space with its individually named
dimensions has been eliminated from the picture. We do retain, however, that
expressions in program variables have types, i.e., they are boolean expres-
sions or integer expressions, etc.: similarly our theory will distinguish
between “boolean structures”, “integer structures”, etc.

6 1. On structures

The reader who is beginning to wonder what our structures “really” are
should control his impatience. The proper answer to the question consists in
the rules of manipulation of formulae containing variables of type structure.
In due time, these rules will be given in full for boolean structures, which are
by far the most important structures with which we shall deal. (We leave to
the reader the exercise of moulding Peano’s Axioms into the manipulative
rules for integer structures.) The impatient reader should bear in mind that
this introductory chapter’s main purpose is to give the reader some feeling for
our goals and to evoke some sympathy for our notational decisions.

* *
*

The next notational hurdle to take has to do with the notion of equality.
Difficulty with the notion of equality might surprise the unsuspecting reader,
who feels —not without justification— that equality is one of the most
fundamental, one of the most “natural”, relations. But that is precisely the
source of the trouble! The notion of equality came so “naturally” that for
many centuries it was quite common not to express it explicitly at all.

For instance, in Latin, in which the verb “esse” for “to be” exists, it is not
unusual to omit it (e.g, “Homo homini lupus.”). In mathematical contexts
equality has been expressed for ages either verbally or implicitly, e.g., by
‘writing two expressions on the same line and leaving the conclusion to the
intelligent reader. We had in fact to wait until 1557, when Robert Recorde
introduced in his “Whetstone of witte” the —in shape consciously de-
signed!— symbol = to denote equality. In the words of E. T. Bell: “It
remained for Recorde to do the right thing.”.

Yes, Recorde did the right thing, but it took some time before it began to
sink in. It took in fact another three centuries before the equality sign gained
in principle the full status of an infix operator that assigned a value to
expressions of the form @ = b . The landmark was the publication of George
Boole’s “Laws of Thought™ in 1854 (fully titled An Investigation of The Laws
of Thought on which are founded The Mathematical Theories of Logic and
Probabilities). Here, Boole introduced what is now known as “the boolean
domain”, a domain comprising two values commonly denoted by “true”
and ‘“falve , respectively. In domg so, he gave a = b the status of what we
now call 2 “boolean expression”.

Yes, Boole too did the right thing, but we should not be amazed that hi-
invention, being less than 150 years old, has ffot sunk in yet and that, by an
large, the boolean values are still treated as second-class citizens. (We shou’
not be amazed at all, for the rate at which mankind can absorb progress
strictly limited. Remember that Europe’s conversion from Roman numera.
to the decimal notation of Hindu arithmetic took at least six centuries.)

1. On structures 7

After this historical detour, let us return for a moment to our physicist with
his potentials. In terms of two given potentials GO and G1 , he is perfectly
willing to define a new potential given by

G = GO0 + Gl

Similarly, a mathematician is perfectly willing to define in terms of two
given 10-by-10 real matrices 4 and B a new 10-by-10 real matrix C by

C=A+B

We said “similarly ”, and rightly so. A potential associates a real value with
each of the points of three-dimensional, “physical” space; a 10-by-10 real
matrix associates a real value with each of the 100 points of the two-
dimensional 10-by-10 space spanned by the row index and the column index.
The additions of potentials and of matrices are “similar” in the sense that
they are to be understood as “point-wise” additions. That in the case of
matrices, where the underlying space is discrete, it is customary to talk about
“element-wise” addition is in this case an irrelevant linguistic distinction.

With this convention of point-wise application in mind it would have
stood to reason to let A = B stand for the 10-by-10 boolean matrix formed
by element-wise comparison.

But this is not what happened. People were at the time unfamiliar with the -
boolean domain. Consequently, a boolean matrix was beyond their vision
and hence a formula like the above C = 4 + B was not read as a boolean
matrix but was without hesitation read as a statement of fact, viz., the fact
that C and A + B were “everywhere” —i.e., element by element— equal.
Similarly, G = GO + G1 is interpreted as a statement of fact, viz., the fact
that the potentials G and GO + G1 are “everywhere” equal and not as an
expression for a “boolean potential”, true wherever G equals GO + G1 and
Jalse elsewhere.

For real expressions 4 and B , A = B stands for a boolean expression
and, hence, for real structures we would tike 4 = B to denote a boolean
structure, but the conventional interpretation reads 4 = B as the fact that
A and B are “everywhere” equal, that 4 and B are “the same”. In
retrospect we can consider this conventional interpretation an anomaly, but
that is not the point. The point is: can we live with that anomaly in the same
way as physicists have lived with it since potentials were invented and
mathematicians have lived with it since matrices were invented?

It would be convenient if the answer were affirmative, as might be the case
in a context in which there is no need for dealing with boolean structures. But
ours is a very different context, for almost all our structures will be boolean.
Hence we cannot live with the notational anomaly and we have to do
something about it.

