%k 2 ™ Rl 3 3

(ZRIZhR - SB3hR)

A

Algorithm;
IN(C

Part 5
GRAPH ALGORITHMS

~Robert Sedgewick
EHETE K F

(%)

&
T

E/ﬁ CES g‘":ilj'.

E5ERST)
E‘Zl H]ix
(FTHR - FE3AR)

AlgorithmsinC
Part 5: Graph Algorithms

(%) Robert Sedgewick
=M T K =

English reprint edition copyright © 2006 by Pearson Education Asia Limited and
China Machine Press.

Original English language title: Algorithms in C, Part 5: Graph Algorithms, Third
Edition (ISBN 0-201-31663-3) by Robert Sedgewick, Copyright © 2002 by Addison-Wesley.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc.,
publishing as Addison-Wesley.

For sale and distribution in the People’s Republic of China exclusively (except
Taiwan, Hong Kong SAR and Macau SAR).

A5 H BN 1 Pearson Education Asia Ltd #28CHLME 100 AR #E SR R -
KEMREBEF A, AHLMEMFRE RSP EEBNE.

(B P e NREFE BN (TEEREE#E. BTk E S S
X)) ¥R

A4 E N A Pearson Education (HAKEMRER) BB HRE, THRE
ETHHEE.

MBI . BRLLER.
FHEEME StERTRARIPRSHR

ABRALEIZS: E¥FE: 01-2006-3989
BHBERSBE (CIP) ¥iiE

Bk CEFKH (Fs58syr): BREGE (EUR - $3M) / (%) EHRR
(Sedgewick, R.) . —dbxt: HLAE T AL HARH:, 2006.9

(L2 HFRR A5 %)

B4 L Algorithms in C, Part 5: Graph Algorithms, Third Edition

ISBN 7-111-19769-0

L8 Io#- IO RTHRENL-FRER- XX o CEE - BRI
-¥X IV.® TP301.6 @ TP312

R AR A B R CIPKIR L (2006) 550965885

BUME Tk HERR AL (lesoli s 17 0 1 ki222 WBECHES 100037)
HiEgEE: BiRE

A REREEN R B2 FIENRY - FAEBEIL R KT & AT
200649 A %5 AR LR EN R

170mm x 242mm -+ 31.25F5k

EPr: 49.007¢

JLA S, anaE5. BRI, B, mAHRTHiRR
A yF e (010) 68326294

BhREBVIE

WEE LA, Fri KB IE S RN ERME, Ei5EREARE
FREANGIREE T ZENRE, WIFREXHENES, HEEEFERERERIN
T EERAAREN. MSAE. E@LAHERS, XENS LR SHETREREE
FHEA, HENFRD LR LAL ER S AR M FRBATL, Bkm 4
M2 MPHEEE, AOUER THRMTERE, CHRETHERNREE, BEFFERMIE,
X HAEFEHANE., KMEHASEE AR TGHERER.

A, E2ERAKRENED T, REMHEN™ LR BRE, FEALNE
KHEAY . XHENETRMHRSTERYLE, WK e kB rREik
FHERKR LEEH¥ERE. EREGFEEHRKEREE®. Mk RECHBRT,
EESRAERARKIUENRZERBNILTERBENSHEHPDETFLEBEL 2
ab. EE, SI#E—#EIMEF T EILEA R E T REILEE F b R RERR#
HEM, hESHREH. BREEMHR B FEHLHZE.

LM Ll iRt e B B M B AR A R R EIRE “HREABFRS . H1998
ETFRR, AEEAE B TEE SMRAE T k. BIEEIMES EH L. S JLERNAR
)1, FAi15Prentice Hall, Addison-Wesley, McGraw-Hill, Morgan KaufmannZg{th 5%
FEANMBA GIE TRFPEERER, WENBA S E M EH + ik H Tanenbaum,
Stroustrup, Kernighan, Jim Gray% KUfi & RKHy—# 2 BAES, L “TPREILBEMAR
A SRR, fiEEES . MRERER. KEBEALBEAOEE, WIEER T XENBN
s PLFIAE A .

“UHEHLEHEAS” MHRTERE TENIMEENR DEY, BRNNERA G
it 7T ERERE T, EARFS EHIE TRIFME KR IE, mEBRES LAY
FHEREREPRAER, AREERAXBHFHERERF. €4, “HHEILBSNS
CRMHER FHEaAwf, XEEREREDPRY TREFVOM, HFHiFZEBCRAA
IEXRBM R ZHE, bt P S5RBITT 7 RIHER.

B & #PHEIRM P EE B SRR, BHF R EIMREILBH Tk
MR HEZE A —AFIER . ik, EEATHEIMASLEEMI NE, #F “EEHF
HUBBL R Z T HAR =4 RN HBENLEA: B “HBEIRENS” 24, SR ENRR
Eé, WMipphyrbet “@BFERBE” ; MM, sl#2XR8THEFHS D
“Schaum’s Outlines” RFHR “REZBEINKRRI. H TRIFX ZEMBIBE
M, WA T B AR MEMIRS . 2L TREIE THERBER. bRk,

KRS, ERRHE KRS, EEHKY. LERBARY. MKE. #L K%, PEH
A, BMIRET A%, AEEHEKRFE. PEARKE. dEMEMELAE. b
BREL K%, LK%, MERFEHRTRKE, PR, it L%k, PEERERELR2
MIFANEF O FEERNE A REFRTEET BN S TSN E a2 EHK “FTK
fBERERET, ABMHREESEE LM BT E.

X ZEABREMEBEFHREOERIMNREMNSE, AENEBRIHENLRHEX
EWHIEEESITEN. EhiF28H5 2 4M. 1. T., Stanford, U.C. Berkeley, C.
M. U. SR A AEH. MU= TEFIR. BaBdw. BIER%E. HENLG
A&, BE. HiFRE. KELE. BE%. 8E5M%. BBEFEFENAS
HEAILE LR RMEORE, MASHEFC—FANEBBIESRIE ZF. AW
BEZTHEMARE. ANEELSHRNILERERRH. £ix 5% 5l ol ey 4 0h ke
HItEsI 2T, EHELEEUHEIHE2NERTHBREMAE.

PURHIMEE . SHRIIEHM . —HRIEE. FROERE. BAgmE, XEREFR
EBAE THREMRIE, BEMNCERARERE, MRBHERLELHEIER X
—E B AR EERE . BEHNHRRZRMNOGEERSHES . FEA BRI EN
FHEH H AT TR HBIERA THRIE, BIWBEARTEHT:

B, F-#pf4: hzjsj@hzbook.com
AWML (010) 68995264

BeAR Mk bW ERK 500 EeE S
BB 446%: 100037

ERIESERS

(P4t R EIRT)
K& W AL E S L&A X £ M
AFE 2 # BEF =8 X B3R
Kik FHE O FRR FHEY A F
BR4E & Fids 7 47 I &% 5 2y 2% B a4+
LR &3 o Em TN
7e18 R R JE 7
= 1 & i3 2 e AT E WA=
-3

To Adam, Andrew, Brett, Robbie,
and especially Linda

Preface

RAPHS AND GRAPH algorithms are pervasive in modern com-

puting applications. This book describes the most important
known methods for solving the graph-processing problems that arise
in practice. Its primary aim is to make these methods and the basic
principles behind them accessible to the growing number of people in
need of knowing them. The material is developed from first principles,
starting with basic information and working through classical methods
up through modern techniques that are still under development. Care-
fully chosen examples, detailed figures, and complete implementations
supplement thorough descriptions of algorithms and applications.

Algorithms

This book is the second of three volumes that are intended to survey
the most important computer algorithms in use today. The first volume
(Parts 1-4) covers fundamental concepts (Part 1), data structures (Part
2), sorting algorithms (Part 3), and searching algorithms (Part 4);
this volume (Part 5) covers graphs and graph algorithms; and the
(yet to be published) third volume (Parts 6-8) covers strings (Part
6), computational geometry (Part 7), and advanced algorithms and
applications (Part 8).

The books are useful as texts early in the computer science cur-
riculum, after students have acquired basic programming skills and
familiarity with computer systems, but before they have taken spe-
cialized courses in advanced areas of computer science or computer
applications. The books also are useful for self-study or as a refer-
ence for people engaged in the development of computer systems or
applications programs because they contain implementations of useful
algorithms and detailed information on these algorithms’ performance
characteristics. The broad perspective taken makes the series an ap-
propriate introduction to the field.

viil

Together the three volumes comprise the Third Edition of a book
that has been widely used by students and programmers around the
world for many years. I have completely rewritten the text for this
edition, and | have added thousands of new exercises, hundreds of
new figures, dozens of new programs, and detailed commentary on all
the figures and programs. This new material provides both coverage of
new topics and fuller explanations of many of the classic algorithms. A
new emphasis on abstract data types throughout the books makes the
programs more broadly useful and relevant in modern object-oriented
programming environments. People who have read previous editions
will find a wealth of new information throughout; all readers will
find a wealth of pedagogical material that provides effective access to
essential concepts.

These books are not just for programmers and computer-science
students. Nearly everyone who uses a computer wants it to run faster
or to solve larger problems. The algorithms that we consider repre-
sent a body of knowledge developed during the last 50 years that has
become indispensable in the efficient use of the computer for a broad
variety of applications. From N-body simulation problems in physics
to genetic-sequencing problems in molecular biology, the basic meth-
ods described here have become essential in scientific research; and
from database systems to Internet search engines, they have become
essential parts of modern software systems. As the scope of computer
applications becomes more widespread, so grows the impact of basic
algorithms, particularly the fundamental graph algorithms covered in
this volume. The goal of this book is to serve as a resource so that
students and professionals can know and make intelligent use of graph
algorithms as the need arises in whatever computer application they
might undertake.

Scope

This book, Algorithms in C, Third Edition, Part 5: Graph Algorithms,
contains six chapters that cover graph properties and types, graph
search, directed graphs, minimal spannirig trees, shortest paths, and
networks. The descriptions here are intended to give readers an un-
derstanding of the basic properties of as broad a range of fundamental
graph algorithms as possible.

You will most appreciate the material here if you have had a
course covering basic principles of algorithm design and analysis and
programming experience in a high-level language such as C, Java, or
C++. Algorithms in C, Third Edition, Parts 1-4 is certainly ade-
quate preparation. This volume assumes basic knowledge about ar-
rays, linked lists, and ADT design, and makes uses of priority-queue,
symbol-table, and union-find ADTs—all of which are described in de-
tail in Parts 1-4 (and in many other introductory texts on algorithms
and data structures).

Basic properties of graphs and graph algorithms are developed
from first principles, but full understanding of the properties of the
algorithms can lead to deep and difficult mathematics. Although the
discussion of advanced mathematical concepts is brief, general, and
descriptive, you certainly need a higher level of mathematical maturity
to appreciate graph algorithms than you do for the topics in Parts 1-4.
Still, readers at various levels of mathematical maturity will be able to
profit from this book. The topic dictates this approach: some elemen-
tary graph algorithms that should be understood and used by everyone
differ only slightly from some advanced algorithms that are not un-
derstood by anyone. The primary intent here is to place important
algorithms in context with other methods throughout the book, not
to teach all of the mathematical material. But the rigorous treatment
demanded by good mathematics often leads us to good programs, so 1
have tried to provide a balance between the formal treatment favored
by theoreticians and the coverage needed by practitioners, without
sacrificing rigor.

Use in the Curriculum

There is a great deal of flexibility in how the material here can be
taught, depending on the taste of the instructor and the preparation
of the students. The algorithms described have found widespread
use for years, and represent an essential body of knowledge for both
the practicing programmer and the computer science student. There
is sufficient coverage of basic material for the book to be used in a
course on data structures and algorithms, and there is sufficient detail
and coverage of advanced material for the book to be used for a
course on graph algorithms. Some instructors may wish to emphasize

ix

implementations and practical concerns; others may wish to emphasize
analysis and theoretical concepts.

For a more comprehensive course, this book is also available in
a special bundle with Parts 1-4; thereby instructors can cover funda-
mentals, data structures, sorting, searching, and graph algorithms in
one consistent style. A complete set of slide masters for use in lectures,
sample programming assignments, interactive exercises for students,
and other course materials may be found by accessing the book’s home
page.

The exercises—nearly all of which are new to this edition—fall
into several types. Some are intended to test understanding of material
in the text, and simply ask readers to work through an example or
to apply concepts described in the text. Others involve implementing
and putting together the algorithms, or running empirical studies to
compare variants of the algorithms and to learn their properties. Still
other exercises are a repository for important information at a level of
detail that is not appropriate for the text. Reading and thinking about
the exercises will pay dividends for every reader.

Algorithms of Practical Use

Anyone wanting to use a computer more effectively can use this book
for reference or for self-study. People with programming experience
can find information on specific topics throughout the book. To a large
extent, you can read the individual chapters in the book independently
of the others, although, in some cases, algorithms in one chapter make
use of methods from a previous chapter.

The orientation of the book is to study algorithms likely to be of
practical use. The book provides information about the tools of the
trade to the point that readers can confidently implement, debug, and
put to work algorithms to solve a problem or to provide functionality
in an application. Full implementations of the methods discussed are
included, as are descriptions of the operations of these programs on
a consistent set of examples. Because we work with real code, rather
than write pseudo-code, the programs can be put to practical use
quickly. Program listings are available from the book’s home page.

Indeed, one practical application of the algorithms has been to
produce the hundreds of figures throughout the book. Many algo-

rithms are brought to light on an intuitive level through the visual
dimension provided by these figures.

Characteristics of the algorithms and of the situations in which
they might be useful are discussed in detail. Although not emphasized,
connections to the analysis of algorithms and theoretical computer
science are developed in context. When appropriate, empirical and
analytic results are presented to illustrate why certain algorithms are
preferred. When interesting, the relationship of the practical algo-
rithms being discussed to purely theoretical results is described. Spe-
cific information on performance characteristics of algorithms and im-
plementations is synthesized, encapsulated, and discussed throughout
the book.

Programming Language

The programming language used for all of the implementations is C
(versions of the book in C++ and Java are under development). Any
particular language has advantages and disadvantages; we use C in this
book because it is widely available and provides the features needed
for the implementations here. The programs can be translated easily
to other modern programming languages because relatively few con-
structs are unique to C. We use standard C idioms when appropriate,
but this book is not intended to be a reference work on C program-
ming.

We strive for elegant, compact, and portable implementations,
but we take the point of view that efficiency matters, so we try to
be aware of the code’s performance characteristics at all stages of
development. There are many new programs in this edition, and
many of the old ones have been reworked, primarily to make them
more readily useful as abstract-data-type implementations. Extensive
comparative empirical tests on the programs are discussed throughout
the book.

A goal of this book is to present the algorithms in as simple and
direct a form as possible. The style is consistent whenever possible
so that similar programs look similar. For many of the algorithms,
the similarities remain regardless of which language is used: Dijkstra’s
algorithm (to pick one prominent example) is Dijkstra’s algorithm,
whether expressed in Algol-60, Basic, Fortran, Smalltalk, Ada, Pascal,

Xi

Xi1

C, C++, Modula-3, PostScript, Java, or any of the countless other
programming languages and environments in which it has proved to
be an effective graph-processing method.

Acknowledgments

Many people gave me helpful feedback on earlier versions of this book.
In particular, hundreds of students at Princeton and Brown have suf-
fered through preliminary drafts over the years. Special thanks are due
to Trina Avery and Tom Freeman for their help in producing the first
edition; to Janet Incerpi for her creativity and ingenuity in persuading
our early and primitive digital computerized typesetting hardware and
software to produce the first edition; to Marc Brown for his part in the
algorithm visualization research that was the genesis of so many of the
figures in the book; to Dave Hanson for his willingness to answer all of
my questions about C; and to Kevin Wayne, for patiently answering my
basic questions about networks. I would also like to thank the many
readers who have provided me with detailed comments about various
editions, including Guy Almes, Jon Bentley, Marc Brown, Jay Gischer,
Allan Heydon, Kennedy Lemke, Udi Manber, Dana Richards, John
Reif, M. Rosenfeld, Stephen Seidman, Michael Quinn, and William
Ward.

To produce this new edition, I have had the pleasure of working
with Peter Gordon and Helen Goldstein at Addison-Wesley, who have
patiently shepherded this project as it has evolved from a standard
update to a massive rewrite. It has also been my pleasure to work with
several other members of the professional staff at Addison-Wesley. The
nature of this project made the book a somewhat unusual challenge
for many of them, and I much appreciate their forbearance.

I have gained two new mentors in writing this book, and partic-
ularly want to express my appreciation to them. First, Steve Summit
carefully checked early versions of the manuscript on a technical level,
and provided me with literally thousands of detailed comments, partic-
ularly on the programs. Steve clearly understood my goal of providing
elegant, efficient, and effective implementations, and his comments not
only helped me to provide a measure of consistency across the imple-
mentations, but also helped me to improve many of them substantially.
Second, Lyn Dupre also provided me with thousands of detailed com-

ments on the manuscript, which were invaluable in helping me not only
to correct and avoid grammatical errors, but also—more important—
to find a consistent and coherent writing style that helps bind together
the daunting mass of technical material here. I am extremely grateful
for the opportunity to learn from Steve and Lyn—their input was vital
in the development of this book.

Much of what I have written here have learned from the teaching
and writings of Don Knuth, my advisor at Stanford. Although Don had
no direct influence on this work, his presence may be felt in the book,
for it was he who put the study of algorithms on the scientific footing
that makes a work such as this possible. My friend and colleague
Philippe Flajolet, who has been a major force in the development of
the analysis of algorithms as a mature research area, has had a similar
influence on this work.

I am deeply thankful for the support of Princeton University,
Brown University, and the Institut National de Recherce en Informa-
tique et Automatique (INRIA), where I did most of the work on the
books; and of the Institute for Defense Analyses and the Xerox Palo
Alto Research Center, where I did some work on the books while
visiting. Many parts of these books are dependent on research that
has been generously supported by the National Science Foundation
and the Office of Naval Research. Finally, I thank Bill Bowen, Aaron
Lemonick, and Neil Rudenstine for their support in building an aca-
demic environment at Princeton in which T was able to prepare this
book, despite my numerous other responsibilities.

Robert Sedgewick

Marly-le-Roi, France, February, 1983
Princeton, New Jersey, January, 1990
Jamestown, Rhode Island, May, 2001

Xiii

Notes on Exercises

Classifying exercises is an activity fraught with peril, because readers
of a book such as this come to the material with various levels of
knowledge and experience. Nonetheless, guidance is appropriate, so
many of the exercises carry one of four annotations, to help you decide
how to approach them.

Exercises that test your understanding of the material are marked
with an open triangle, as follows:

>17.2 Consider the graph
3-7 1-4 7-8 0~5 5-2 3-8 2-9 0-6 4-9 2-6 6-4.

Draw the its DFS tree and use the tree to find the graph’s bridges

and edge-connected components.
Most often, such exercises relate directly to examples in the text. They
should present no special difficulty, but working them might teach you
a fact or concept that may have eluded you when you read the text.

Exercises that add new and thought-provoking information to the

material are marked with an open circle, as follows:

o0 18.2 Write a program that counts the number of different pos-
sible results of topologically sorting a given DAG.

Such exercises encourage you to think about an important concept
that is related to the material in the text, or to answer a question that
may have occurred to you when you read the text. You may find it
worthwhile to read these exercises, even if you do not have the time to
work them through.

Exercises that are intended to challenge you are marked with a black
dot, as follows:

@ 19.2 Describe how you would find the MST of a graph so large
that only V edges can fit into main memory at once.
Such exercises may require a substantial amount of time to complete,
depending upon your experience. Generally, the most productive ap-
proach is to work on them in a few different sittings.
A few exercises that are extremely difficult (by comparison with
most others) are marked with two black dots, as follows:

e 20.2 Develop a reasonable generator for random graphs with
V vertices and E edges such that the running time of the PFS
implementation of Dijkstra’s algorithm is nonlinear.

These exercises are similar to questions that might be addressed in the
research literature, but the material in the book may prepare you to
enjoy trying to solve them (and perhaps succeeding).

The annotations are intended to be neutral with respect to your
programming and mathematical ability. Those exercises that require
expertise in programming or in mathematical analysis are self-evident.
All readers are encouraged to test their understanding of the algorithms
by implementing them. Still, an exercise such as this one is straight-
forward for a practicing programmer or a student in a programming
course, but may require substantial work for someone who has not
recently programmed:

e 17.2 Write a program that generates V random points in the
plane, then builds a network with edges (in both directions) con-
necting all pairs of points within a given distance d of one another
(see Program 3.20), setting each edge’s weight to the distance be-
tween the two points that it connects. Determine how to set d so
that the expected number of edges is E.

In a similar vein, all readers are encouraged to strive to appreciate
the analytic underpinnings of our knowledge about properties of al-
gorithms. Still, an exercise such as this one is straightforward for a
scientist or a student in a discrete mathematics course, but may require
substantial work for someone who has not recently done mathematical

analysis:
018.2 How many digraphs correspond to each undirected graph
with V vertices and E edges?

There are far too many exercises for you to read and assimilate
them all; my hope is that there are enough exercises here to stimulate
you to strive to come to a broader understanding on the topics that
interest you than you can glean by simply reading the text.

XV

Contents

Graph Algorithms

Chapter 17. Graph Properties and Types
17.1 Glossary - 7
17.2 Graph ADT - 16

.

17.3 Adjacency-Matrix Representation - 21
17.4 Adjacency-Lists Representation - 27
17.5 Variations, Extensions, and Costs - 31
17.6 Graph Generators - 40

17.7 Simple, Euler, and Hamilton Paths - 50
17.8 Graph-Processing Problems - 64

Chapter 18. Graph Search
18.1 Exploring a Maze - 76

18.2 Depth-First Search - 81
18.3 Graph-Search ADT Functions - 86

75

