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1.1 Setting the scene

1.1.1 What is the coastal zone?

At the outset of this book, it is important to articulate
clearly what we mean by ‘coast’, because the term means
different things to different people. For most holidaymak-
ers, the coast is synonymous with the beach. For bird-
watchers, the coast generally refers to the intertidal zone;
while for cartographers, the coast is simply a line on the
map separating the land from the sea. Coastal scientists
and managers tend to take a broader view.

According to our perspective, the coast represents that
region of the Earth’s surface that has been affected by
coastal processes, i.e. waves and tides, during the
Quaternary geological period (the last 2.6 M years). The
coastal zone thus defined includes the coastal plain,
the contemporary estuarine, dune and beach area, the
shoreface (the underwater part of the beach), and part of
the continental shelf and, in areas of isostatic or tectonic

uplift, fossil raised shorelines (Fig. 1.1). At a first glance,
it seems rather arbitrary and perhaps odd to take such a
long-term view of the timescale involved with coastal
processes and geomorphology. However, as we will see
later (Chapter 2), the Quaternary was a period character-
ized by significant changes in sea level. In the past, eus-
tatic, or global, sea level has been considerably lower
than at present (>100m) during cold glacial periods, but
also somewhat higher (up to 10m) during some of the
warm interglacial periods. This implies that coastal sedi-
ments and landforms have the potential to extend con-
siderably beyond the zone of contemporary coastal
processes. In areas of former glaciations, where isostatic
processes have caused crustal uplift, fossil coastal land-
forms can be found far above the present shoreline
(Fig. 1.2a). Similarly, in tectonically active coastal areas,
fossil shorelines can also be significantly displaced
(Fig. 1.2b). In a lateral sense our definition means that the
coastal zone can span hundreds of kilometres, especially

Coastal Environments and Global Change, First Edition. Edited by Gerd Masselink and Roland Gehrels.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd. Companion Website: www.wiley.com/go/masselink/coastal
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Fig. 1.1 Spatial extent of the coastal zone, including the coastal plain, shoreface and continental shelf. Note that the widths of these zones

are globally highly variable. (Source: Masselink et al. 201 1. Reproduced with permission of Hodder & Stoughton Ltd.)

(a)

Fig. 1.2 (a) Postglacial raised beaches at Porsangerfiord, Finnmark, Norway; (b) fossil coastal notch in Barbados formed in the last
interglacial (c. 125,000 years ago) and raised above sea level by tectonic processes; and (c) view from Prawle Point (south Devon, UK
looking east, showing an apron of periglacial solifluction deposits emplaced on a raised shore platform presumed to date to the last

interglacial. The fossil interglacial sea cliff is also visible. (Source: Photographs by Roland Gehrels.)
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Fig. 1.3 (a) Coastline around the North Sea during the last interglacial, around 125,000 years ago (Source: Adapted from Streif 2004.

Reproduced with permission of Elsevier); and (b) land area (in white) around the British Isles during the Late Glacial Maximum,
around 20,000 years ago (Source: Adapted from Brooks et al. 2011).

in areas with broad continental shelves and shallow seas.
For example, Fig. 1.3a shows the position of the coastline
in northwest Europe during the last interglacial when sea
level was several metres higher than today. During the
Last Glacial Maximum the shoreline was close to the

present-day continental shelf edge (Fig. 1.3b). Because
coastal evolution is cumulative, i.e. the contemporary
coastal landscape is partly a product of coastal processes
and landforms in the past (Cowell and Thom, 1994), we
need to take this long-term perspective.
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Fig. 1.4 Coastal morphology of the Tuncurry embayment, New South Wales, Australia, showing the presence of five barrier systems:
the contemporary barrier, a drowned barrier on the inner shelf, and three high-stand barriers. Each of these barriers is of a different age
and formed at a different relative sea level. MSL, mean sea level. (Source: Adapted from Roy et al. 1994. Reproduced with permission

from Cambridge University Press and Masselink et al. 2011.)

Figure 1.4 shows an interpretive map and cross-section
of the Tuncurry embayment in New South Wales, Australia.
Here, research has demonstrated the presence of at least
five coastal barrier systems of various ages (see Chapter 8),
each of which is associated with a different sea level (Roy
et al., 1994). In addition to the contemporary barrier sys-
tem, there are three so-called highstand barriers to the land-
ward (ages c. 240ky, 140ky and 90ky BP) and one drowned
barrier system to the seaward on the continental shelf (age
c¢. 50ky BP). To understand fully the dynamics of the pre-
sent barrier system, in addition to contemporary coastal
processes and sea level, the evolution and configuration of

these older barriers also have to be taken into account. For
example, the drowned barrier system can supply (and prob-
ably has supplied) sediment to the contemporary barrier,
whereas the highstand barriers have provided the substrate
on which the present-day barrier has developed.

Figure 1.2¢ shows a scenic view from Prawle Point in
Devon, UK. At this location, periglacial solifluction depos-
its (locally known as ‘head’) were emplaced during the last
glacial period on a raised shore platform that formed during
the preceding interglacial when sea level was several metres
higher than present. The ‘head’ is an important sediment
source for contemporary beaches, while rocky shore
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platforms are re-occupied during consecutive interglacial
highstands. So here also, present-day coastal geomorphology
is significantly affected by past coastal processes and land-
forms. In fact, erosional coastal features, especially when
carved into resistant rocks, are often polygenetic (i.e. the
product of more than one sea level) and rocky coast morphol-
ogy can rarely be explained solely in terms of contemporary
processes and sea level (Trenhaile, 2010).

1.1.2 Coastal zone and society

The coastal zone, representing the interface between the
land and the sea, is of interest to a range of coastal scien-
tists, including geographers, geologists, oceanographers
and engineers. Societal concern and interest are, however,
concentrated on that area in which human activities are
interlinked with both the land and the sea. This area of
overlap is referred to as the ‘coastal resource system’ and
is of great societal importance, often serving as the source
or backbone of the economy of coastal nations. The most
obvious use of the coastal zone is providing living space,
and the coast is clearly a preferred site for urbanization.
For example, 23% of the global population currently live
within 100 km of the coast and less than 100m above sea
level. Population density in coastal areas is three times
larger than average, and projected population growth rates
in the coastal zone are the highest in the world (Small and
Nicholls, 2003). In addition, 21 of the 33 megacities (cities
with more than eight million people; the projected top
five for 2015 are Tokyo, Mumbai, Lagos, Dhaka and
Karachi) can be considered coastal cities (Martinez et al.,
2007). It is worth pointing out, however, that the dynamic
definition of the coastal zone at the start of this section
(based on sediments, sea-level history and coastal pro-
cesses|) is different from the static definition generally
used by planners and demographers, based on some
arbitrary distance from the coastline and/or elevation
above sea level.

Human occupation is, however, but one of many uses
of the coastal resource system and an extraordinarily wide
range of resources and activities essential to our society
take place in the coastal zone, including navigation and
communication, living marine resources, mineral and
energy resources, tourism and recreation, coastal infra-
structure development, waste disposal and pollution,
coastal environmental quality protection, beach and
shoreline management, military activities and research
(Cicin-Sain and Knecht, 1998). Unfortunately, there can
be fierce competition for coastal resources by various
users (or stakeholders) and these may result in conflicts,
and possible severe disruption, or even destruction, of
the functional integrity of the coastal resource system.
Such conflicts are especially prevalent in the case of
incompatible wuses - of the coastal zone (e.g. land

reclamation versus nature conservation; coastal protec-
tion versus tourism; waste disposal versus fisheries).

The dramatic growth in coastal population and uses
has placed increased pressure on the coastal resource
system and has led, in many cases, to severely damaged
coastal ecosystems and depleted resources. In addition,
overdevelopment of the coast in terms of urbanization
and infrastructure has significantly increased our
vulnerability to coastal erosion and flooding, whilst at
the same time the increased reliance on hard coastal
engineering structures for coastal protection has reduced
our resilience. To make matters worse, global climate
change resulting in a rise in sea level and potentially an
increase in storminess (or at least a change in wave
climate) will provide additional pressure on the coastal
zone. An integrated approach is required for the man-
agement of activities and conflicts in the coastal zone
(Integrated Coastal Zone Management, ICZM; see
section 7.4 and Chapter 17), but what is also essential,
is a thorough understanding of the key processes driving
and controlling coastal environments.

1.1.3 Scope of this book and chapter outline

The focus of this book, therefore, is to provide a descrip-
tion of the various coastal environments, including their
functioning and governing processes, and also to evalu-
ate how they might be affected by global change and
how coastal management may assist in dealing with
coastal problems arising from climate change. To pro-
vide the theoretical framework and the scope of this
book, this chapter will first discuss the dominant para-
digm for coastal research (‘morphodynamics’). This is
followed by a summary of the dominant elements of cli-
mate change relevant to the coastal zone and finally a
description of the various approaches used for modelling
coastal change.

1.2 Coastal morphodynamics

1.2.1 Research paradigm

In science, the term ‘paradigm’ refers to the ‘set of practices
that defines a scientific discipline at any particular period
of time’ (Kuhn, 1996). It relates to the overall research
approach adhered to by the majority of the researchers in
a certain scientific discipline and encompasses a large
number of elements, including methods of observation
and analysis, the types of questions asked and the topics
studied, the theoretical framework of the discipline, and
even mundane issues such as the key scientific journal(s)
of the discipline. In the vernacular, it can simply be trans-
lated as the most common way to study a subject or, even,
the way a subject should be studied (‘exemplar’). As a
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Fig. 1.5 Conceptual diagram illustrating the morphodynamic approach, showing the coastal morphodynamic systems and the
environmental boundary conditions (sea level, climate, external forcing and static boundary conditions). (Source: Masselink 2012.

Reproduced with permission from Pearson Education Ltd.)

discipline evolves over time, it is imperative that our
knowledge and understanding thereof increases, concur-
rent with an increased sophistication of the research tools
and analysis methods. As this happens, the relevant ques-
tions and methods of addressing these are likely to change
as well; in other words, the paradigm changes. Thomas
Kuhn (1922-1996), a leading philosopher of science, argued
that science progresses by means of abrupt paradigm
shifts, generally initiated by key scientific discoveries
and/or novel research tools shedding new light on hitherto
unobservable phenomena.

The dominant paradigm in coastal research up to World
War Il was observation and classification of coastal land-
forms, mainly in the context of geology and sea-level
change, with coastal scientists primarily being concerned
with describing and mapping the coast. During the 1950s
and 1960s, the emphasis changed from observation to
explanation, and this required a better understanding of
the actual processes involved in driving and controlling
coastal landforms and evolution. This development
occurred right across the disciplines of geomorphology
and physical geography, and is referred to as the process
revolution (Gregory, 2000). A key tool of this paradigm
was conducting actual measurements of (coastal) pro-
cesses, cither in the laboratory or in the field, and formu-
lating empirical models and theories to explain these
observations. Coastal landforms were very much consid-
ered the mere product of the processes, but it quickly
became apparent that not only is the morphology shaped
by processes, but it also provides feedback to these pro-
cesses. In other words, the geomorphology is an active
player, rather than a passive responder to the forcing, and
has some degree of control over its own development.
This notion initiated a new paradigm, referred to as the
‘morphodynamic approach’, and this approach was elo-
quently and comprehensively introduced to coastal geo-
morphologists by Wright and Thom (1977) in a benchmark
paper in Progress in Physical Geography (ironically, a jour-
nal now rarely used as an outlet for coastal research).

There have been subsequent developments in geomor-
phology and physical geography that have contributed to
a refining of the morphodynamic paradigm, involving
concepts such as chaos theory and non-linear dynamics
(Richards, 2003). However, these are all directly reliant on
the key notion of mutual feedback between process and
form, and are therefore not fundamentally different from
the morphodynamic approach. It has been argued that the
most current paradigm involves interactions between
physical and socio-economic systems, and has material-
ized in a new scientific field: Earth System Science.
Others maintain that this is merely a rebranding of the
old discipline of Geography (Pitman, 2005). We leave such
musings behind and focus on what the morphodynamic
paradigm represents.

1.2.2 Coastal morphodynamic systems

According to the coastal morphodynamic paradigm,
conceptualized in Fig. 1.5, coastal systems (e.g. salt marsh,
beach, tidal basin) comprise three linked elements
(morphology, processes and sediment transport) that
exhibit a certain degree of autonomy in their behaviour,
but are ultimately driven and controlled by environmen-
tal factors (Wright and Thom, 1977). These environmental
factors are referred to as ‘boundary conditions’, and
include the solid boundary (geology and sediments;
Chapter 3), climate (section 1.3) and external forcing
(wind, waves, storms, tides and tsunami; Chapters 4 and
5), with sea level (Chapter 2) serving as a meta-control by
determining where coastal processes operate. When
contemporary coastal systems and processes are consid-
ered, human activity should also be taken into account. In
fact, along many of our coastlines human activities, such
as beach nourishment, construction of coastal defences,
dredging and land reclamation, are more important in
driving and controlling coastal dynamics than the natural
boundary conditions and can therefore not be ignored



Introduction to Coastal Environments and Global Change 7

Longshore
movement

%

Headland

Inputs *

Headland

River
sediment

Onshore/ ;
offshore
movement Tidal
exchange
/

Storm

» Barrier

Bt overwash
Longshore Swash-aligned
movement transgressive
< shoreline
‘ . Dune
formation

(@)

Longshore
<= Outputs
Hloyement / Cliff erosion
River )
Onshore/ sediment ,.
offshore
movement ‘

Drift-aligned
progradational
beach-ridge

plain

Longshore

Dune
movement N formation

(b)

Fig. 1.6 Sediment budgets on: (a) estuarine; and (b) deltaic coasts. (Source: Masselink et al. 2011. Reproduced with permission of Hodder
& Stoughton Ltd and adapted from Carter and Woodroffe 1994 with permission from Cambridge University Press.)

(Chapter 17). Moreover, through climate change, humans
are altering the boundary conditions themselves (sea-level
rise and changes to the wave climate).

Unless long-term coastal change (centuries to millennia)
is considered, the boundary conditions can be viewed as
given and constant, although it should be borne in mind
that external forcing is stochastic (random), and the
dynamics of coastal systems arise from the interactions
between the three linked elements:

(1) Processes: This component includes all processes
occurring in coastal environments that generate and affect
the movement of sediment, resulting ultimately in morpho-
logical change. The most important of these are hydrody-
namic (waves, tides and currents) and aerodynamic (wind)
processes. Along rocky coasts, weathering is an additional
process that contributes significantly to sediment transport,
either directly through solution of minerals, or indirectly by
weakening the rock surface to facilitate mobilization by
hydrodynamic processes (Chapter 15). In addition, biologi-
cal, biophysical and biochemical processes are important in
salt marsh (Chapter 10), mangrove (Chapter 11) and coral
reef (Chapter 16) environments. River outflow processes
are important in deltas (Chapter 13).

(2) Sediment transport: A moving fluid imparts a stress on
the bed, referred to as ‘bed shear stress’, and if the bed is
mobile this may result in the entrainment and subsequent
transport of sediment. The ensuing pattern of erosion and
deposition can be assessed using the sediment budget

(Fig. 1.6). If the sediment balance is positive (i.e. more
sediment is entering a coastal region than exiting),
deposition will occur and the coastline may advance,
while a negative sediment balance (i.e. more sediment is
exiting a coastal region than entering) results in erosion
and possibly coastline retreat. This makes quantifying the
sediment budget a fundamental means for understanding
coastal dynamics, as well as providing a tool for assessing
and predicting future coastal change.

(3) Morphology: The three-dimensional surface of a land-
form or assemblage of landforms (e.g. coastal dunes, del-
tas, estuaries, beaches, coral reefs, shore platforms) is
referred to as the morphology. Changes in the morphology
are brought about by erosion and deposition, and are, in
part, recorded in the stratigraphy (section 1.2.4).

It is worth emphasizing that the morphodynamic
approach is scale-invariant, i.e. the approach can be applied
regardless of the spatial scale of the coastal feature under
investigation. For example, at the smallest scale, the
approach can be applied to wave and tidal bed forms; at the
largest scale, to tidal basins or entire delta systems.
Importantly, the spatial and temporal scales of coastal mor-
phodynamic systems are related (Fig. 1.7): the larger the
spatial scale of the coastal system, the longer the timescale
associated with the dominant process(es) and the associ-
ated coastal morphodynamics. The spatio-temporal rela-
tionship is, however, not linear: some coastal systems
respond faster than one would expect on the basis of their
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size (labile systems; e.g. sandy barriers without dunes),
whereas other coastal systems exhibit a relatively slow
response (sluggish systems; e.g. rocky coasts). The
timescale of the response of a coastal system also depends,
of course, on the magnitude of the forcing, and the classic
magnitude-frequency concept (Wolfman and Miller, 1960)
is as relevant now as it was when it was introduced in
geomorphology.

1.2.3  Morphodynamic feedback

A characteristic of coastal morphodynamic systems is the
presence of strong links between form and process (Cowell
and Thom, 1994). The coupling mechanism between pro-
cesses and morphology is provided by sediment transport
and is relatively easy to comprehend. There is, however,
also a link between morphology and processes to com-
plete the morphodynamic feedback loop.

As an example, under calm wave conditions sand is
transported on a beach in the onshore direction resulting
in beach accretion and the construction of a feature known
as the ‘berm’ (Fig. 1.8). During berm construction, the sea-
ward slope of the beach progressively steepens and the top
of the berm increases in elevation relative to sea level
through accretion; both morphological developments

Fig. 1.8 Photograph of a developing berm on a sandy beach.
Berms are swash-formed features that usually develop as part of
beach recovery following storm erosion. On tidal beaches they
are found just above the high-tide level. This particular berm
formed after a period of energetic waves and is well defined
with a small runnel located to the landward. The photo was
taken at high tide and the berm is still being overtopped by
swash action and is therefore still being constructed. (Source:
Photograph by Gerd Masselink.)



