. T
V1)1 [//// [/

[¥%] Douglas Bell Mike Parr %

AP IR HRCLRL

www.waterpub.com.cn

DOUGLAS BELL
MIKE PARR

C#

D T HEeina

www.waterpub.com.cn

Copyright © Pearson Education Limited 2004.
This edition of C# FOR STUDENTS, First Edition is published by arrangement
with Pearson Education Limited.

ARHTEIBEENSFEILS . 01-2005-4708

MHZEMME (CIP) M8 |
CHERFFiRit/ (35) TR (Bell, D.), (%) #/R
(Parr, M.) %. —EIA. —ILR: EARIKAE

WR#t, 2006

it RS BREH H LRI EA)
H4B3: C# FOR Students
ISBN 7-5084-4107-9

I C---

I1.OR--@%g--- N.CER-BF&IT
—REFE—HH—%EX N.TP312
B A B B EECIP R T (2006) 351163245

+ 4
1 &
HE %17
& *
H &
Ep Rl
M *
R& b/d
Ep #
xE #h

CHEEFigit
(%] Douglas Bell Mike Parr 3%
e KR AR AT (AESETH = H #8645 100044)
PAlhlk: www.waterpub.com.cn
E-mail: mchannel@263.net (J7/K)
sales@waterpub.com.cn
HLTG: (010) 63202266 (ML), 68331835 (FEiHuly), 82562819 (Ji/K)
2 E & HFTHE A E X R R E RS

A= AKBFEEARAA

JE T R R)

787mm x 1092mm 16 F#& 24.25613% S37F=%
20064E10 HE51 5% 2006 4E10 A4 1)kEN R
0001—3000

36.005¢

LM ERAES, wARR., BN, LAY, KAEH TR AR

BHEHE - @SR

Preface

- Thls book is for nowces

T T T T R T T S S R R

.........................

If you have never done any programming before — if you are a complete novice — this book is for
you. This book assumes no prior knowledge of programming. It starts from scratch. It is written
in a simple, direct style for maximum clarity. It is aimed at first level students at universities and
colleges, but it is also suitable for novices studying alone.

& Why C#? AAAAAAAAAAAAAAAAA
C# is arguably one of the best programming languages to learn and use in the 21st century
because:

% C# continues the tradition of the family of languages that includes C, C++ and Java.

Object-oriented languages are the latest and most successful approach to programming. C#
is completely object-oriented from the ground up.

C# is a completely general-purpose language — anything that Visual Basic, C++ and Java
can do, so can C#.

C# gains most of its functionality from a library of components provided by the .NET
framework.

@ You will need ...

To learn to program in C# you need a PC running Windows 2000, NT, XP or above and the soft-
ware that allows you to prepare and run C# programs in a convenient way. There are two ver-
sions of the software provided by Microsoft — Visual C# .NET (for C# alone) and Visual Studio
.NET (which supports both C# and other languages). This book comes with CDs containing a
full version of Visual Studio .NET.

@ The approach of this book

We explain how to use objects early in this book. Our approach is to start with the ideas of vari-
ables, assignment and methods, then use objects created from library classes. Next we explain
how to use control structures for selection and looping. Then comes the treatment of how to

xiii

xiv 4 Preface

write your own classes. _
We wanted to make sure that the fun element of programming was paramount, so we use

graphics right from the start. We think graphics is fun, interesting and clearly demonstrates all
the important principles of programming. But we haven’t ignored programs that input and out-
put text — they are also included.

The programs we present use many of the features of graphical user interfaces (GUIs), such
as buttons and text boxes. But we also explain how to write console programs in C#.

We introduce new ideas carefully, one at a time rather than all at once. So, for example, there is
a single chapter on writing methods. We introduce simple ideas early and more sophisticated
ideas later on.

& what's iyl'l»Clyudbe‘d?

This book explains the fundamental ideas of programming:

variables;

¢ assignment;

input and output using a graphical user interface (GUI);
calculation;

repetition;

: selection between alternatives.

£y

It explains how to use numbers and character strings. Arrays are also described. These are all
topics that are fundamental, whatever kind of programming you do. This book also thoroughly
explains the object-oriented aspects of programming ~ using objects, writing classes, methods
and properties, and using library classes. We also look at some of the more sophisticated aspects
of object-oriented programming including inherit-ance, polymorphism and interfaces.

What's not included? DU e «

This book confines itself to the essentials of C#. It does not explain all the bits and pieces, the
bells and whistles. Thus the reader is freed from unnecessary detail and can concentrate on mas-
tering C# and programming in general.

L UML

The Unified Modeling Language (UML) is the current mainstream notation for describing pro-
grams. We use elements of UML selectively, where appropriate, throughout this book.

* Applications

Computers are used in many diaerent applications and this book uses examples from all areas
including:

& games;
information processing;

Preface & xv

scientific calculations.

We have also included a few exercises which look at the exciting idea of artificial life.
The reader can choose to concentrate on those application areas of interest and ignore other

areas.

& Exercises are good for you
If you were to read this book time and again until you could recite it backwards, you still would-
n’t be able to write programs. The practical work of writing programs is vital to becoming fluent
and confident at programming,

There are exercises for the reader at the end of each chapter. Please do some of them to
enhance your ability to program.

There are also short self-test questions throughout the text, so that you can check you have
understood things properly. The answers are given at the end of each chapter.

@ Have fun

Programming is creative and interesting, particularly in C#. Please have fun!

& Visit our website
The website includes:

@ the text of all the programs in this book;

a discussion forum for students;

@ a bonus chapter covering the use of C# with databases;
@ additional resources for instructors.

Our website can be reached via the Pearson Education website at:
http://www.mikeparr.info/csharplst/csabout.html
http://www.pearsoned.co.uk/HigherEducation/ Booksby/BellParr/.

ORONOUMA~WN=

Contents

The background to C#
The C# development environment
Introductory graphics
Variables and calculations
Methods and arguments
Using objects

Selection

Repetition

Debugging

Writing classes
Inheritance

Calculations

Data structures - list boxes and array lists
Arrays

Arrays - two-dimensional
String manipulation
Exceptions

Files

Console programs
Object-oriented design
Program style

Testing

Interfaces

Polymorphism

Appendices

19

30

49

78

96
122
138
147
166
179
193
203
222
233
251
264
284
297
318
329
341
346

357

Detailed contents

1. The background to Ci
The history of C#
The Microsoft .NET framework
What is a program?
Programming principles
Programming pitfalls
Summary
Exercises
Answers to self-test questions

2. The C# development environment
Introduction
Installation and configuration
Creating a first program
Controls at design-time
Events and the Button control
Opening an existing project
Documenting property settings
Program errors
Editor facilities
The message box
Help
Programming principles
Programming pitfalls
Grammar spot
New language elements
New IDE facilities
Summary
Exercises
Answers to self-test questions

3. Introductory graphics
Introduction
Objects, methods, properties, classes — an analogy

iv

UV H B DDANNS

(2B~ I <))

~

1
13
13
14
14
15
16
16
16
16
17
17
17
17
18

19
19
19

A first drawing

Creating the program

The graphics coordinate system
Explanation of the program
Methods for drawing

Colours

The sequence concept and statements
Adding meaning with comments
Programming principles
Programming pitfalls

Grammar spot

New language elements

New IDE facilities

Summary

Exercises

Answers to self-test questions

4. Variables and calculations
Introduction
The nature of int
The nature of double
Declaring variables
The assignment statement
Calculations and operators
The arithmetic operators
The % operator
Joining strings with the + operator
Converting between strings and numbers
Text boxes and labels
Converting between numbers
The role of expressions
Programming principles
Programming pitfalls
Grammar spot
New language elements
New IDE facilities
Summary
Exercises
Answers to self-test questions

5. Methods and arguments
Introduction
Writing your own methods
A first method
Calling a method
Passing arguments
Parameters and arguments
A triangle method
Local variables

Detailed contents @& v

20
21
21
22
23
25
26
27
28
28
28
28
28
28
28
29

30
30
31
31
3N
34
35
36
38
39
40
a4
43

45
45
45
46
46
46
46
48

49
49
49
50
52
53
54
54
57

Name clashes 57
Event-handling methods 59
return and results 59
Building on methods 62
Passing arguments by reference 63
out and ref arguments 65
out — an example 65
ref — an example 67
A swap method with ref 68
this and objects 69
Overloading 70
Passing objects to methods 71
Programming principles 72
Programming pitfalls 72
Grammar spot 73
New language elements 73
New IDE facilities . 73
Summary 74
Exercises 74
Answers to self-test questions 76

6. Using objects 78
Introduction 78
Instance variables 78
The form constructor 81
The TrackBar class 83
using and namespaces 85
Members, methods and properties 86
The Random class 87
The Timer class 90
Programming principles 92
Programming pitfalls 92
Grammar spot 93
New language elements 93
New [DE facilities 93
Summary 93
Exercises 93
Answers to self-test questions 95

7. Selection 96
Introduction 96
The if statement 96
if...else 98
Comparison operators 100
And, or, not 104
Nested ifs 107
switch 108
Boolean variables 112

Programming principles 115

Programming pitfalls
Grammar spot

New language elements
Summary

Exercises

Answers to self-test questions

8. Repetition
Introduction
while
for
And, or, not
do...while
Nested loops
Combining control structures
Programming principles
Programming pitfalls
Grammar spot
New language elements
Summary
Exercises
Answers to self-test questions

9. Debugging

Introduction

Using the debugger
Case study in debugging
Common errors
Programming pitfalls
New IDE facilities
Summary

Exercise

10. Writing classes
Introduction

Designing a class
private variables
public methods
Properties

Method or property?
Constructors

Multiple constructors
private methods
Operations on objects
Object destruction
static methods and properties
Programming principles
Programming pitfalls

Detailed contents @ viij

115
115
116
116
116
119

122
122
122
126
127
129
130
132
132
132
133
133
133
134
135

138

138
139
141
142
145
146
146
146

147
147
147
150
150
151
154
155
156
157
157
158
159
160
161

viii € 1 The scope ofJ{aya

Grammar spot

New language elements
Summary

Exercises

Answers to self-test questions

11. Inheritance
Introduction

Using inheritance
protected

Additional items
Overriding

Class diagrams
Inheritance at work
base

Constructors

Abstract classes
Programming principles
Programming pitfalls
New language elements
Summary

Exercises

Answers to self-test questions

12. Calculations
Introduction

Formatting numbers

Library mathematical functions and constants
Constants

Case study — money

Case study - iteration

Graphs

Exceptions

Programming principles
Programming pitfalls
Summary

Exercises

Answers to self-test questions

13. Data structures - list boxes and array lists
Introduction

Array lists

Adding items to a list

The length of a list

Indices

Removing items from a list

Inserting items within a list

Lookup

162
163
163
163
165

166
166
166
168
169
169
170
171
171
172
174
175
176
176
177
177
178

179
179
179
182
182
183
185
185
188
189
189
189
190
192

193
193
193
194
195
195
196
197
197

Detailed contents & ix

Arithmetic on a list box 198
Searching 200
Programming principles 201
Programming pitfalls 201
New language elements 201
Summary 201
Exercises 202
Answers to self-test questions 202
14. Arrays 203
Introduction 203
Creating an array 204
Indices 205
The length of an array 207
Passing arrays as parameters 207
Using constants 208
Initializing an array 209
A sample program 209
Lookup 211
Searching 212
Arrays of objects 213
Programming principles 213
Programming pitfalls 215
Grammar spot 216
Summary 216
Exercises 216
Answers to self-test questions 220
15. Arrays - two-dimensional 222
Introduction 222
Declaring an array 223
Indices 223
The size of an array 224
Passing arrays as parameters 225
Constants 225
Initializing an array 226
A sample program 227
Programming principles 228
Programming pitfalls 229
Summary 229
Exercises 229
Answers to self-test questions 232
16. String manipulation 233
Introduction 233
Using strings - a recap 233
String indexing 234
The characters within strings 235

A note on the char type 235

x @ 1 The scope of Java

The string class methods and properties
Comparing strings

Amending strings

Examining strings

Regular expressions

An example of string processing
Case study - Frasier
Programming principles
Programming pitfalls

Grammar spot

New language elements

New IDE facilities

Summary

Exercises

Answers to self-test questions

17. Exceptions
Introduction

The jargon of exceptions

A try-catch example

Using the exception object
Classifying exceptions
Multiple catch blocks

The search for a catcher
Throwing - an introduction
Handling — some possibilities
finally

Programming principles
Programming pitfalls
Grammar spot

New language elements
New IDE facilities

Summary

Exercises

Answers to self-test questions

18. Files
Introduction
The essentials of streams

The StreamReader and streamWriter classes

File output

File input

File searching

Files and exceptions
Message boxes and dialogs
Using file dialogs

Creating a menu

The Directory class

236
237
237
239
242
244
245
247
247
248
248
248
248
249
250

251
251
253
253
255
256
257
257
259
260
260
261
261
261
262
262
262
262
263

264
264
264
265
265
267
269
271
272
274
275
278

Programming principles
Programming pitfalls
Grammar spot

New language elements

New IDE facilities

Summary

Exercises

Answers to self-test questions

19. Console programs
Introduction

A first console program

The command prompt: cd and dir
Ways of running programs
Classes in console applications
Command-line arguments
Scripting and output redirection
Scripting and batch files
Programming principles
Programming pitfalls

Grammar spot

New language elements

New IDE facilities

Summary

Exercises

Answers to self-test questions

20. Object-oriented design
introduction
The design problem

Identifying objects, methods and properties

Case study in design

Looking for reuse
Composition or inheritance?
Guidelines for class design
Summary

Exercises

Answers to self-test questions

21. Program style
Introduction

Program layout
Comments

Using constants

Classes

Nested ifs

Nested loops

Complex conditions

Detailed contents @ xi

280
280
280
281
281
281
281
282

284
284
284
286
288
289
289
291
292
293
293
293
293
293
294
294
295

297
297
298
298
302
309
309
313
314
315
316

318
318
319
320
320
321
322
324
325

xii € Detailed contents

Documentation
Programming pitfalls
Summary

Exercises

22. Testing

Introduction

Program specifications
Exhaustive testing

Black box (functional) testing
White box (structural) testing
Inspections and walkthroughs
Stepping through code
Formal verification
Incremental development
Programming principles
Summary

Exercises

Answers to self-test questions

23. Interfaces
Introduction

Interfaces for design
Interfaces and interoperability
Programming principles
Programming pitfalls

New language elements
Summary

Exercises

24. Polymorphism
Introduction
Polymorphism in action
Casting

Rules for casting
Programming principles
Programming pitfalls
New language elements
Summary

Exercises

Answer to self-test question

Appendices

A Selected library components

B Keywords

327
327
328
328

329
329
330
330
331
333
355
336
336
336
337
337
337
339

341
341
341
343
344
344
344
345
345

346
346
346
349
350
352
353
353
354
354
355

356
356
37

The background to C#

This chapter explains:

@ how and why C# came into being;
@ Microsoft’s NET framework;
@ the introductory concepts of programming.

© The history of C#

A computer program is a series of instructions that are obeyed by a computer. The point of the
instructions is to carry out a task — e.g. play a game, send an e-mail, etc. The instructions are
written in a particular style: they must conform to the rules of the programming language we
choose. There are hundreds of programming languages, but only a few have made an impact
and become widely used. The history of programming languages is a form of evolution, and
here we will look at the roots of C# (‘C Sharp’). The names of the older languages are not
important, but we provide them for completeness.

Around 1960, a programming language named Algol 60 was created. (‘Algol’ from the term
‘algorithm’ — a series of steps that can be performed to solve a problem.) This was popular in
academic circles, but its ideas persisted longer than its use. At this time, other languages were
more popular: COBOL for data processing, and Fortran for scientific work. In the UK, an
extended version of Algol 60 was created (CPL — combined programming language), which was
soon simplified into basic CPL, or BCPL.

We then move to Bell Laboratories USA, where Dennis Ritchie and others transformed BCPL
into a language named B, which was then enhanced to become C, around 1970. C was tremen-
dously popular. It was used to write the UNIX operating system, and much later, Linus Torvalds
used it to write a version of UNIX — named LINUX - for PCs.

The next step came when C++ (‘C plus-plus’) was created around 1980 by Stroustrup, also at
Bell Labs. This made possible the creation and reuse of separate sections of code, in a style
known as ‘object-oriented programming’. (In C, you could use ++ to add one to an item — hence
C++ is one up from C.)

C++ is still popular, but hard to use; it takes a lot of study. Around 1995, Sun Microsystems

