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Introduction

1.1 Maintenance Strategies

The complexity of modern high-value assets, such as aircraft and their major
subsystem components, is increasing at a rapid pace. This is occurring against
a backdrop of ever-increasing demands on reliability, availability, and perfor-
mance of the asset in achieving its primary function throughout its service life.
By their very nature, such complex systems usually involve large capital invest-
ment, and therefore there is an expectation that a profitable financial return can
be realized with minimal service disruption and avoidance of expensive outages
to the operator. This notion is clearly not unique to high-valued complex sys-
tems; indeed any business that is dependent on mechanical equipment as part
of its service delivery will always want to see a return on investment with mini-
mum disruption to their service operation. The usual mechanism to deliver a
reliable operation is to implement some form of maintenance policy. This will
vary depending on the asset type and its application, but typically comes down
one of the strategies identified below:

1. Don’t bother— exploit any available redundancy and just replace the
asset when it becomes defective.

2. Wait until the asset becomes defective then maintain it by performing
restoration and/or repair as appropriate.

3. Maintain it at regular intervals even when the asset is still functional
(preventative maintenance).
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4. Maintain the asset when the need arises (condition based mainte-
nance).

5. Operate a combination of 3 and 4.

There are various factors to consider in deciding which of the above pol-
icies are appropriate for the asset owner. This decision is likely to involve a
trade-off between asset value (for example, the cost of replacement) and the
cost associated with performing maintenance. In the latter case, issues such
as impact of outage (i.e., loss of revenue during the outage and its duration),
cost of refurbishment, cost associated with inventory (e.g., spare parts and any
specialist equipment) will be major items of consideration. Of course from a
design perspective, investment costs associated with built-in redundancy may
also be considered. Naturally, the operator will consider these factors as a means
to mitigate financial and/or safety risks of their service operation, and in certain
cases, may choose another party to take on those services as a means to reduce
their own financial burden. Indeed, many original equipment manufacturers
(OEMs) include such after-sales care as part of their service offering to the
point where the asset is considered incidental and becomes a consequence of
the functional commodity. For example, the use of a gas compressor in a remote
installation for the purpose of pumping gas over a long-distance pipe-line may
be sold in the context of guaranteeing volume of gas transferred per hour/day as
opposed to the sale of the mechanical compressor.

The circumstances of electing not to perform any maintenance are most
likely to occur when the asset value is extremely low (hence affordable to replace)
and has minimum disruptive effects on expected operation. In a domestic set-
ting, the author has often been asked when purchasing a kettle (which probably
only takes place at a frequency of every 6-7 years) if additional insurance cover-
age is required in case the kettle fails. Experience indicates this is typically 10%
of the purchase price. A quick analysis may lead to the conclusion that such
offers are actually financially unattractive. This is based on the product having
a 12 month guarantee (will be replaced anyway during that period); a very low
risk of failure; being relatively easy to replace after the warranty period, and
therefore having an extremely low disruptive impact on its prime functional
purpose. It most likely can be replaced at a similar price and is hence affordable.

Electing to perform maintenance that involves repair and/or restoration
only when the asset becomes defective can be, in certain applications, very ex-
pensive particularly in cases where secondary damage follows the initial failure.
One reason for selecting this option, however, may be influenced by the loss
of revenue in a continuous operating environment, versus any potential outage
cost, such as parts replacement, weighed against an expected low risk of failure.
Again using a domestic example, it is unlikely that most people will imple-
ment a routine preventative maintenance policy for an electric oven. Should
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the heating element fail, then obtaining a replacement is relatively easy and
quick to obtain. It is also easy to replace using basic tools. This does of course
assume that the root cause of failure can be diagnosed by the owner. Even so,
if the owner does not have access to the skills or capability, then it is relatively
straight forward and relatively low cost to organize the services of a tradesman
who can carry out the work on their behalf; hence contracting out the mainte-
nance activity.

Adopting a policy based on routine preventative maintenance is often se-
lected when the asset has high intrinsic value and/or high functional value to the
operator such that disruption to normal operation would be unwelcome and
potentially costly to remedy. In the case of high-integrity assets, it’s likely that
certain components will be assigned a hard-life for safety reasons, meaning that
such components would be expected to be replaced before they have reached
a predetermined age to avoid the risk of hazardous failure. This approach
therefore follows a conservative policy and is based on domain knowledge of
component/subsystem wear mechanisms. Preventive maintenance activities
generally include partial or complete overhauls of the asset at specified time
intervals involving different work-scopes depending on service life achieved
and future service life ambitions and may entail activities such as oil changes,
lubrication, minor adjustments, and replacement of parts, and so on. The ideal
preventive maintenance program would preserve equipment function and pre-
vent all equipment failure before it occurs. The main disadvantage with this ap-
proach is that following a prescribed maintenance task, based on a subsystems
service age, is likely to lead to the replacement of parts that may still have an ac-
ceptable service life if additional analysis of component condition does not take
place. Unfortunately, this isn’t always straight forward as accurate assessment of
a component’s condition may require use of expensive specialized equipment to
fully assess remaining useful life. Such a policy also has the obvious disadvan-
tage of needing to take the asset out of service for the duration of maintenance.
Although such events can be planned in advance to minimize the disruptive ef-
fect, it does have an inevitable impact on availability and the likely consequence
of carrying additional spare inventory. Even in cases where a minimum stock
order system is in place, there is likely to be an increase in through-life costs
resulting from higher demand of spares. Although there is no requirement to
actually perform any form of monitoring to comply with this approach, it is
necessary for the maintainer to track life usage.

Condition-based maintenance (CBM) can be regarded as performing
maintenance when the need arises. Usually, need is determined when one or
more indicators show signs of deterioration or emerging signs of failure. CBM
aims to utilize monitored data to assist and direct the optimum use of resource
and parts to maintain the system at a level of health that delivers the required
functionality. This means that assuming an accurate assessment of health
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condition can be derived at a system level; action only takes place when mainte-
nance is necessary. To be fully effective, CBM should also support the appropri-
ate level of analysis of health condition so that work-scope activity is optimized
ensuring maintenance personnel only perform activities that are essential to
preserve function. The obvious benefit of this approach is that CBM minimizes
the demand for spare parts, reduces down-time, and increases availability to
the operator. There are of course significant challenges with this approach, par-
ticularly when implementing CBM on existing installations for the first time.
Heavy use of instrumentation will be required and therefore additional sensing
capability may need to be installed. Introducing CBM into an existing organi-
zation will also have an impact on how maintenance is performed and therefore
how personnel perceive its effectiveness against an established traditional ap-
proach. Such cultural changes in work practices are not trivial and a successful
CBM policy will only be realized if all members of the maintenance organiza-
tion are fully engaged and buy-in to the strategy. There are also significant tech-
nical challenges with this approach since investment will be required to trans-
late simple measured values (such as vibration and pressure temperature.) into
actionable information related to the current health state of the system which
may be nontrivial. Use of CBM therefore tends to be in application areas where
increased reliability and safety are required; an example of which is the U.S.
Army who have developed a robust approach to CBM through the introduc-
tion of guidance and reference standards [1] that apply to systems, subsystems,
and components of U.S. Army aircraft.

For high-integrity assets, particularly in applications where operational
safety is paramount (as in the case of the aviation industry), there is clearly a
need to track the age and condition of life-limited parts. As mentioned before,
life-limited parts are cleared for safe operations with a predetermined age limi-
tation. This is established using conservative operational assumptions as it is not
always known how the equipment will actually be used. When the actual asset
utilization is known, there is opportunity to review and adjust the life limita-
tion and still achieve the design intent. For example, the life limit for some
components of an aero gas turbine engine may be influenced by the maximum
shaft speed of the low-pressure shaft during take-off. Engines operating on air-
craft which tend to use relatively lower thrust at take-off (and hence lower shaft
speed) will consume less life than those operating at higher take-off thrust levels
for the same engine type. Such a difference can be significant enough to alter
the interval between shop visits and hence aircraft availability.

CBM can also reduce the conservatism inherent in a purely preventa-
tive maintenance policy by mitigating the risk of disruption from unexpected
equipment wear out and failures. Clearly disruption to service still needs to be
minimized and hence for noncritical components (where safety of operation
is not hazarded by their failure) the option to include a more condition-based



