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PREFACE

Prologue

The word analysis comes from the Greek avdAvots, which means “dissolving
into pieces.” This is usually the first step of a process that leads to a careful
study and understanding of an object or phenomenon. The antithetical process,
called o0veous, is equally significant as it assembles the analyzed pieces after they
have been individually examined. This procedure is the heart of Fourier analysis.
Through its aorta, this heart disseminates information to a variety of applications.
Fourier analysis is therefore a prism that diffracts ideas into a rainbow of uses
and applications, making the subject one of the richest and most far-reaching in
mathematics.

The primary goal of this text is to present the theoretical foundation of the
field of Fourier analysis. This book is mainly addressed to graduate students in
mathematics and is designed to serve for a three-course sequence on the subject.
The only prerequisite for understanding the text is satisfactory completion of a
course in measure theory, Lebesgue integration, and complex variables. This book
is intended to present the selected topics in some depth and stimulate further study.
Although the emphasis falls on real variable methods in Euclidean spaces, a chapter
is devoted to the fundamentals of analysis on the torus. This material is included for
historical reasons, as the genesis of Fourier analysis can be found in trigonometric
expansions of periodic functions in several variables.

The choice of the material in the text reflects a measure of personal taste;
however, a certain effort has been made to include a variety of topics of general
interest. Much attention is given to details, which are designed to facilitate the
understanding of first-time readers. Based on my personal experience, I felt a need
to include details related to topics that articles often omit, leaving beginners to
struggle through without explanation. Although it will behoove many readers to
skim through the more technical aspects of the presentation and concentrate on the
flow of ideas, the mere fact that details are here for reference will be comforting
to some. I hope that students will profit from this comprehensive presentation
and learn how to do mathematics rigorously. Unfortunately, including so many
details has led to the large size of the book. But as one’s maturity and familiarity
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xii Preface

with the subject increases, topics slowly beécome natural and reading is significantly
accelerated.

The exercises that follow each section enrich the material of the corresponding
section and provide an opportunity to develop additional intuition and deeper com-
prehension. Some of them are rather rudimentary and require miriimal skill, while
others are more interesting and challenging. Only a few exercises are considered
difficult, but these are given with hints. A special effort has been made to prepare
the exercises, which unfortunately did not double, but almost tripled, the amount
of time and effort it took to complete this text. I hope that the reader will find this
extra effort beneficial.

The historical notes given at the end of each chapter are intended to provide an
accurate account of past research but also to suggest directions for further inves-
tigation. This book was partly written with the purpose of attracting students to
research. Many of the topics in Chapter 10 lead to open problems that have bewil-
dered mathematicians for decades. It is hoped that many students will be fascinated
by the easy statements, yet the delicate complexity of some of these problems, and
pursue a deeper understanding.

The text is completely self-contained as the appendix includes the miscellaneous
material needed throughout. Certain user-friendly conventions have been adopted
to facilitate searching. For instance, theorems, propositions, definitions, lemmas,
remarks, and examples are numbered according to the order in which they appear
in each section. Exercises are numbered similarly and can be easily located.

As this book is intended for a three-course sequence on the subject, I would
like to suggest a slowly paced initial breakdown of the material, flexible enough
to accommodate adjustments: Semester I: Chapters 1, 2, 3, and 4. Semester II:
Chapters 5, 6, 7, and 9. Semester III: Chapters 8, 10, and other topics. Sections or
“subsections marked by a star would normally be omitted in a yearly course.

I am solely responsible for any misprints, mistakes, and historical omissions
in this book. Please contact me directly (loukas@math.missouri.edu) if you have
any comments, suggestions, improvements, or corrections. Instructors are also wel-
come to contact me to obtain further hints on the-existing exercises in the text.
Suggestions for other exercises are also welcome. A list of current errata with ac-
knowledgements will be kept at the following URL:

http://math.missouri.edu/~loukas/Fourier-Analysis
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CHAPTER 1

L? Spaces and Interpolation

The primary focus of this monograph is the study of Fourier series and integrals
of functions. Many of their properties are quantitatively expressed in terms of
the integrability of the function. For this reason it is desirable to acquire a good
understanding of spaces of functions whose modulus to a power p is integrable.
These are called Lebesgue spaces and are denoted by LP. Although an in-depth
study of Lebesgue spaces falls outside the scope of this book, it seems appropriate
to devote a chapter to reviewing some of their fundamental properties.

The emphasis of our review will be basic interpolation between Lebesgue spaces.
Many problems in Fourier analysis concern boundedness of operators on Lebesgue -
spaces and interpolation provides a framework that often simplifies their study.
For instance, in order to show that a linear operator maps L?P into itself for all
1 < p < o0, it is sufficient to show that it maps the (smaller) Lorentz space LP:!
into the (larger) Lorentz space LP*° for the same range of p’s. Moreover, some
further reductions can be made in terms of the Lorentz space LP!. This and other
considerations indicate that interpolation is a powerful tool in the study of bound-
edness of operators.

Although we will be mainly concerned with L? subspaces of the Euclidean space
R", we discuss in this chapter L? spaces of arbitrary measure spaces, as they often
present a useful general setting. Moreover, many proofs in the text go through when
Lebesgue measure is replaced by a more general measure.

1.1. 1? and Weak [?

Let X be a measure space and let 4 be a positive, not necessarily finite, measure
on X. For 0 < p < oo, LP(X,p) will denote the set of all complex-valued pu-
measurable functions on X whose modulus to the pth power is integrable. L™(X, i)
will be the set of all complex-valued u-measurable functions f on X such that for
some B > 0, the set {z : |f(z)| > B} has y-measure zero. Two functions in LP(X, y1)
will be considered equal if they are equal p-almost everywhere. The notation LP(R™)
will be reserved for the space LP(R", |-|), where |- | denotes n-dimensional Lebesgue
measure. Lebesgue measure on R™ will also be denoted by dx. Within context and
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2 Chapter 1. L? Spaces and Interpolation

in the lack of ambiguity, LP(X, u) will simply be LP. The space LP(Z) equipped
with counting measure will be denoted by #°(Z) or simply 7.
For 0 < p < o0, we define the LP quasi-norm of a function f by

(111) e = ( [ 1@ duta))”
" and for p = oo by
(1.1.2) |!f||L°°(X,p) inf {B>0: p({z: |f(z)| > B}) =0}.

1t is well known that Minkowski’s (or the triangle) inequality

(1.1.3) || f +9“Lp(x,u) s ”f”LP(X,u) + HQHLp(X,m

holds for all f, g in L? = LP(X,u), whenever 1 < p < oco. Since in addition

|| f “ X = 0 implies that f = 0 (u-a.e.), the LP spaces are normed linear spaces

for1 < p < 0. For 0 < p < 1, inequality (1.1.3) is reversed when f, g > 0. However,
the following substitute of (1.1.3) hoids:

(1.1.4) If + 9”Lv(x,p) = 2(1_p)/p(”f”LP(X,p) + ||9|’Lp(x,u))

and thus the spaces IP(X,p) are quasi-normed linear spaces. See also Exercise
1.1.5. For all 0 < p < o0, it can be shown that every Cauchy sequence in LP(X, u)
is convergent, and hence the spaces LP(X, ) are complete. For the case 0 < p < 1
we refer to Exercise 1.1.8. Therefore, the L? spaces are Banach spaces for 1 < p < o0
and quasi—Banach spaces for 0 < p < 1. For any p € (0 00) \ {1} we will use the
notation p’ 5’;—1. Moreover we set 1’ = oo and oo’ = 1 so that p” = p for all
p € (0,00]. Holder’s inequality says that for all p € [1,00] and all measurable
functions f, g on (X, u) we have

”fg”Ll < “f”Lpugan' .

It is & well-known fact that the dual (LP)* of L? is isometric to L? forall 1 < p < co.
Furthermore, the LP norm of a function can be obtained via duality when 1 < p < o0

as follows:
/ fg du‘ .
X

For the endpoint cases p = 1, p = oo, see Exercise 1.4.12(a), (b).

filpr = sup
171l o,

1.1.a. The Distribution Function

Definition 1.1.1. For f a measurable function on X, the distribution function
of f is the function dy defined on [0, 00) as follows:

(1.1.5) df(a) = p({z € X : |f(2)} > a}).



1.1. L” and Weak L* 3
The distribution function dy provides information about the size of f but not
about the behavior of f itself near any given point. For instance, a function on
R"™ and any of its translates have the same distribution function. It follows from
Definition 1.1.1 that df is a decreasing function of a (not necessarily strictly).
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FIGURE 1.1. The graph of a simple function f = Zi=1 arxEg, and its
distribution function ds(a). Here B;=3"1_,; u(Ex).

Example 1.1.2. Recall that simple functions are finite linear combinations of
characteristic functions of sets of finite measure. For pedagogical reasons we com-
pute the distribution function dy of a nonnegative simple function

N
f(:L') = ZanEj(w)y
J=1
where the sets E; are pairwise disjoint and a; > --- > ay > 0. If a@ > a;, then

clearly d(a) = 0. However, if a3 < & < a; then |f(x)| > « precisely when z € E;
and, in general, if a;4; < @ < aj, then |f(z)| > o precisely when z € E,U---UE;.
Setting

J
Bj = u(Ex)

k=1
we have

N
df(a) = ZBjX[aj..,.;,aj)(a)y
i=1
where ay+1 = 0. Figure 1.1 illustrates this example when N = 3.

We now state a few simple facts about the distribution function dy. We have

Proposition 1.1.8. Let f and g be measurable functions on (X, u). Then for
all o, 8 > 0 we have



