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PREFACE

The central topic of this book is the modelling of polymer entropy on lattices.
This is a classical field of lattice statistical mechanics models which include the
self-avoiding walk, lattice trees and animals, and lattice surfaces. The analysis
of lattice models of polymer entropy is fundamentally a combinatorial problem,
namely, the counting of connected structures in a lattice. Many lattice models
remain intractable and can only be analysed using sophisticated mathematical
approaches.

Lattice models of the self-avoiding walk, or clusters such as lattice trees and
animals, vesicles and surfaces, may be directed or undirected, interacting or free,
confined in sub-lattices or interacting with a boundary. In each case the basic
questions are similar in nature, namely, how many walks, paths or clusters are
there of given size, what are the free energies, what are the scaling properties
and can anything be said about the phase diagrams?

Determining the free energies and phase diagrams of lattice models poses in
most cases challenging mathematical problems. A wide collection of approaches,
including methods from mathematical physics, probability theory, combinatorics
and the theory of phase transitions, has been used in some way or another in the
very large scientific literature devoted to these models. Numerical approaches
have become equally sophisticated and are for the most part based on exact
enumeration or Monte Carlo methods.

The free energy of a lattice model defines its phase diagram, which may
include several phases separated by critical lines and points. The phases are
frequently representative of phase behaviour seen in polymeric systems, and uni-
versal thermodynamic scaling near critical points remains the subject of much
research. Proving the existence of phase boundaries and critical points and cal-
culating critical exponents pose significant difficulties in many models. It is both
the mathematical challenges and the significant progress made which underlie
the continuing popularity of lattice models of polymeric systems. Much has been
shown, and even more remains to be discovered and seems within reach.

The first edition of this book was out of date within a few years of its publica-
tion in the year 2000, due to the fast pace of new results. This, and the omission
of a chapter on Monte Carlo methods, made an update of the first edition a
priority, and I hope that the new edition will improve on the first.

An undertaking of this size draws on the resources of many, and I have ben-
efited and learned much over two decades in collaborations with Stuart Whit-
tington, Enzo Orlandini, Carla Tesi, Andrew Rechnitzer, Claus Ernst, Yuanan
Diao and Neal Madras. I am also grateful to Emmanuel Bradlow for his support
more than thirty years ago, and to Ron Horgan for introducing me to the ideas
and models in polymer entropy:.






© @ =N & O AR W N =

o o e
W N = O

H O o o »

CONTENTS

Lattice models of linear and ring polymers
Lattice models of branched polymers
Interacting lattice clusters

Scaling, criticality and tricriticality

Directed lattice paths

Convex lattice vesicles and directed animals
Self-avoiding walks and polygons

Self-avoiding walks in slabs and wedges
Interaction models of self-avoiding walks
Adsorbing walks in the hexagonal lattice
Interacting models of animals, trees and networks
Interacting models of vesicles and surfaces
Monte Carlo methods for the self-avoiding walk
Subadditivity

Convex functions

Kesten’s pattern theorem

Asymptotic approximations

Percolation in Z¢

References

Index

38

76
111
135
218
254
297
326
395
415
461
478
528
536
547
558
581
595
618



HoNREE, FE B SE #EPDFIE 1S 0] : www. ertongbook. com



DETAILED CONTENTS

Lattice models of linear and ring polymers
1.1 The self-avoiding walk

1.2 Lattice polygons

1.3 Self-avoiding walks with fixed endpoints

1.4 Scaling

1.5 Walk and polygon generating functions

1.6 Tadpoles, figure eights, dumbbells and thetas
1.7 Knotted lattice polygons

Lattice models of branched polymers

2.1 Lattice animals and lattice trees

2.2  Stars, combs, brushes and uniform networks
2.3 Conformal invariance

2.4 The Edwards model

Interacting lattice clusters

3.1 The free energy of lattice clusters

3.2 Free energies and generating functions
3.3 The microcanonical density function
3.4 Integrated density functions

3.5 Combinatorial examples

Scaling, criticality and tricriticality

4.1 Tricritical scaling

4.2 Finite size scaling

4.3 Homogeneity of the generating function

4.4 Uniform asymptotics and the finite size scaling function

Directed lattice paths

5.1 Dyck paths

5.2 Directed paths above the line y = rz

5.3 Dyck path models of adsorbing copolymers
5.4 Motzkin paths

5.5 Partially directed paths

5.6 Staircase polygons

5.7 Dyck paths in a layered environment

5.8 Paths in wedges and the kernel method
5.9 Spiral walks

Convex lattice vesicles and directed animals
6.1 Partitions

[S100 Sl

19
21
25

38
39
52
o7
63

76
76
79
84
98
103

111
112
119
123
125

135
135
152
154
160
166
176
188
201
215

218
218



xii

10

11

12

6.2
6.3
6.4
6.5
6.6
6.7
6.8

Detailed Contents

Stacks

Staircase vesicles

Convex polygons

Dyck path vesicles

Bargraph and column convex vesicles
Heaps of dimers, and directed animals
Directed percolation

Self-avoiding walks and polygons

2.
.2
7.3
7.4
7.5

Walks, bridges, polygons and pattern theorems
Patterns in interacting models of walks and polygons

Patterns, curvature and knotting in stiff lattice polygons

Writhe in stiff polygons
Torsion in polygons

Self-avoiding walks in slabs and wedges

8.1
8.2
8.3
8.4
8.5

Self-avoiding walks in slabs

Generating functions of walks in slabs

A pattern theorem for walks in S,

Growth constants and free energies of walks in slabs
Polygons and walks in wedges

Interaction models of self-avoiding walks

9.1
9.2
9.3
94
9.5
9.6
0.7

Adsorbing self-avoiding walks and polygons
Adsorbing polygons

Copolymer adsorption

Collapsing self-avoiding walks

Collapsing and adsorbing polygons

Walks crossing a square as a model of the #-transition
Pulled self-avoiding walks

Adsorbing walks in the hexagonal lattice

10.1
10.2

Walks and half-space walks in the hexagonal lattice
Adsorption of walks in a slit in the hexagonal lattice

Interacting models of animals, trees and networks

11.1
11.2
11.3
11.4
11.5
11.6

The pattern theorem for interacting lattice animals
Self-interacting or collapsing lattice animals
Adsorbing lattice trees

Adsorbing percolation clusters

Embeddings of abstract graphs

Uniform networks

Interacting models of vesicles and surfaces

12.1
12.2

Square lattice vesicles
Crumpling self-avoiding surfaces

223
226
232
233
235
238
243

254
264
274
279
286
289

297
298
306
312
315
317

326
326
352
360
366
371
376
382

395
395
405

415
416
422
436
446
449
454

461
461
468



Detailed Contents

13 Monte Carlo methods for the self-avoiding walk
13.1 Dynamic Markov chain Monte Carlo algorithms
13.2 The Beretti-Sokal algorithm
13.3 The BFACF algorithm
13.4 The pivot algorithm
13.5 The Rosenbluth method and the PERM algorithm
13.6 The GARM algorithm
13.7 The GAS algorithm

A Subadditivity
A.1 The basic subadditive theorem
A.2 The Wilker and Whittington generalisation of Fekete's lemma
A.3 The generalisation by JM Hammersley
A.4 A ratio limit theorem by H Kesten

B Convex functions
B.1 Convex functions and the midpoint condition
B.2 Derivatives of convex functions
B.3 Convergence
B.4 The Legendre transform

C Kesten’s pattern theorem
C.1 Patterns
C.2 Proving Kesten’s pattern theorem
C.3 Kesten’s pattern theorem

D Asymptotic approximations
D.1 Approximation of the binomial coefficient
D.2 Approximation of trinomial coefficients
D.3 The Euler-Maclaurin formula
D.4 Saddle point approximations of the integral
D.5 Asymptotic formulae for the g-factorial and related functions
D.6 Asymptotics from the generating function
D.7 Convergence of continued fractions

E Percolation in Z¢
E.1 Edge percolation
E.2 The decay of the percolation cluster
E.3 Exponential decay of the subcritical cluster
E.4 Subexponential decay of the supercritical cluster

References

Index

xiii

478
479
488
490
493
500
509
518

528
528
528
530
534

536
536
538
543
545

547
547
550
555

558
559
562
564
566
567
578
579

581
581
583
584
590

595
618






1
LATTICE MODELS OF LINEAR AND RING POLYMERS

A linear polymer is a large molecule consisting of a backbone of atoms or groups
of atoms (monomers) which are joined in a sequence by covalent bonds. Parts of
a polymer joined by a single covalent bond may rotate freely relative to one an-
other, since single covalent bonds permit free rotations. These rotational degrees
of freedom contribute to the configurational entropy of the polymer — quanti-
fying this configurational entropy is the fundamental problem in polymer en-
tropy [117, 202-204].

A typical polymer is illustrated in figure 1.1. If all the monomers are chem-
ically identical, then the polymer is a homopolymer, and, if they are of at least
two different flavours, then it is a heteropolymer.

Jmol

F1G. 1.1. An alkane with a backbone of twenty carbon atoms bound in a linear
chain [600].

A branched polymer is formed when polymeric side-chains are attached to
a polymer backbone. Branched polymers are found in different forms, including
trees and animals, as well as brushes, combs, stars, dendrimers, and so on.

A popular model of linear polymer entropy is a random walk (see for example
reference [176]). A random walk is a good model for the conformational degrees
of freedom but fails to explain the asymptotic properties of a linear polymer in
a good solvent because excluded volume effects are not included in the model.

Configurational entropy and excluded volume of a linear polymer can be
modelled by a lattice self-avoiding walk. A self-avoiding walk is the union of a
sequence of lattice edges or steps joining adjacent vertices along a path which

The Statistical Mechanics of Interacting Walks, Polygons, Animals and Vesicles, 2nd edition,
E.J. Janse van Rensburg. © E.J. Janse van Rensburg. Published in 2015 by Oxford University Press,



2 Lattice models of linear and ring polymers

FIG. 1.2. A self-avoiding walk from the origin in L2. The walk is oriented away
from its endpoint at the origin.

avoids itself. The number of such paths is the microcanonical partition function
in the model and is a quantitative and relative measure of linear polymer entropy.
The self-avoiding walk model is obtained by endowing the set of self-avoiding
walks of fixed given length with the uniform measure. This is a classical model
about which a great deal is known and even more remains unknown [399].

1.1 The self-avoiding walk

Let R? be d-dimensional real vector space and denote its standard basis by
(€1,€3,...,€4). The hypercubic lattice L® is the graph R? with vertex set Z¢ and
edge set formed by all unit length line segments between vertices in Z4, That is,

L? = {(#~) | for 4,7 € L¢ with || — 7|2 = 1}. (1.1)

If (i~%) € L4 then @, € L? and 7@ and ¥ are adjacent while @ (or ¥) is
incident with (@~%). If ¥ € L? is a vertex, then its Cartesian coordinates are
3(1), 5(2), .., 5(d))-

A self-avoiding walk w of length n steps is a sequence of n+ 1 distinct ver-
tices (7;);_y = (To,01,2,...,0n) such that (#;_,~7;) is an edge in L¢ for
i =1,2,...,n . The i-th edge in the walk is (#;_1 ~¥;). Normally, the zeroth
vertex is placed at the origin: o = 0. This induces a natural orientation in each
walk, away from 0 (see figure 1.2).

The number of self-avoiding walks from 0 of length n is denoted by e,. It can
be checked that ¢ = 1 (a single vertex), and in LY, ¢; = 2d, ¢; = 2d(2d — 1),
and ¢z = 2d(2d—1)2. If d = 2, then ¢4 = 100, and ¢5 = 284. Notice that
Cn+1 < (2d —1)ep, for n > 1, since there are at most 2d — 1 choices for the (n + 1)-
th step. This shows that ¢, < 2d(2d —1)"~!. By counting walks which only step
in positive directions, ¢, > d". This shows that ¢, grows exponentially in 7.



