M

EN hig)

KFHENREERNEZHMET (

COMPUTER SCIENCE
AN OVERVIEW

SEVENTH EDITION

J. Glenn Brookshear &

AlERF ML

AFUHENHFTESPELBMRT (BAK)

Computer Science: An Overview

Seventh Edition
HEHEERE
(8 7hk)

J. Glenn Brookshear

REXFHEH
=

English reprint edition copyright © 2004 by PEARSON EDUCATION ASIA LIMITED and TSINGHUA

UNIVERSITY PRESS.
Original English language title from Proprietor’s edition of the Work.

Original English language title: Computer Science: An Overview, Seventh Edition by J. Glenn Brookshear,

Copyright © 2003
All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Addison-Wesley.

This edition is authorized for sale and distribution only in the People’s Republic of China (excluding the Special
Administrative Region of Hong Kong, Macao SAR and Taiwan).
A ABENRR A Pearson Education CRAEME HAREED AAHE LK Y HIRA HRR RAT .

For sale and distribution in the People’s Republic of China exclusively
(except Taiwan, Hong Kong SAR and Macao SAR).

RTPEARL iﬂlilf"W(TﬁﬁﬂFlé,#\ &l'lﬁ%ll {THXF
8EHRX) HERIT

ERTERRBEFERAFEICE BEF 01-2003-7894
ZHHHMH Pearson Education (24K H HATEF) AR RS, THFBEFEWE.

B TS E (CIP) #ii

WHHLRIE R0 (3 7 RO = Computer Science: An Overview, Seventh Edition / 7 # 37 % 4K (Brookshear J.G.)
#H A —bR: EEKERM, 2003

(KEFTENEE R ELEH RS
ISBN 7-302-07792-4

Iowbe T A T NS -BSSR—-#M—%T V. TP3
P E AR A BIE CIP ¥R F (2003) % 116053 B

WA & EEREHRT o hb dbRERKEEAE
http://www.tup.com.cn BE 4R 100084
2. (010) 62770175 EFBR%: (010) 6277 6969
WEMmIE: SRGE

ED B . RO

¥ T & ZMmHRETARAF

& 17 & FEBESEETETH

185X230 EP3K: 37

: 2004 F 1 A 1R 2004451 A% 1 IRETRY
: ISBN 7-302-07792-4/TP * 5678

1~5000

54.00 7%

HT
T a0 B

FBMFELFARE. WEILLR ST BRI 5 Send & i, B SIEE R E M AR A AR SR R
W BARHEIE: (010) 62770175-3103 B (010) 62795704

e i B

HA 21 e, HAZENEHF. BEURFEEANEFEEMBN. TFHFOE
HEMAANRES. ERFTABRBRANNT, EREERFTRENE. RERF, #
AEFREBAA NI, DRZITEEN. HRERSHENEMETRE, 47T
IREH T EH AR, BEBEEANRHRERLRA BINRREH

FHERFURAEMN 1996 FFF8, SESELBRAFEE, BEBRT “K¥EHEH
HEAD (BHR” F—RIGIHES, 23 T7HENEEHRENCRF. BA 21 g,
BIFEARERFHEEMBBRRSHOVE, ECHEREMLE, #—B5 KEERE,
HEEBFART, —wEERETXERALEEHATRESEAN RN ENHE
HIBEISME REMEE LB, HREAE “ REAENEEENELHEMRF (RER)”,
LR . RUIME LS REPEERAERIIEM ORI E LR RARN. EREENE
K. HBRRARNEREFSMIEHREORBHHE, URBIEE < RFEHEVHEFES
FLEMRS (BHR)” MAEY, EEAERARITENEE.

HHERFE R
2002.10

Preface

This book provides an introduction to the science of computing. It surveys the breadth of the
subject while including enough depth to convey an honest appreciation for the topics involved.

Audience
I wrote this text for both computer science majors and students from other disciplines. As for
computer science majors, most begin their studies with the illusion that computer science is
programming and Web browsing since that is essentially all they have seen. Yet computer sci-
ence is much more than this. In turn, beginning computer science students need exposure to
the breadth of the subject in which they are planning to major. Providing this exposure is the
purpose of this book. It gives students an overview of computer science—a foundation from
which they can appreciate the relevance and interrelationships of future courses in the field.
This same background is what students from other disciplines need if they are to relate
to the technical society in which they live. A computer science course for nonmajors should
provide a fundamental understanding of the entire field rather than merely an introduction
to popular software packages. This survey approach is the model used for introductory courses
in the natural sciences, and it is the model I had in mind as I wrote this text. Accessibility for
nonmajors was one of my major goals. The result is that previous editions of this book have
been used successfully in courses for students over a wide range of disciplines. This edition
is designed to continue that tradition.

Organization

This text follows a bottom-up approach that progresses from the concrete to the abstract—an
order that results in a sound pedagogical presentation in which each topic leads to the next.
It begins with the fundamentals of computer architecture (Part 1), progresses to software and
the software development process (Part 2), explores issues of data organization and data stor-
age (Part 3), and closes by considering current and future applications of computer technol-
ogy (Part 4).

While writing the text, [actually thought in terms of developing a plot. Consequently, I
am not surprised that many students have reported reading the text in much the same way
that they normally read novels. On the other hand, the text is divided into largely independ-
ent chapters and sections that can be read as isolated units (see Figure 0.7 in Chapter 0) or
rearranged to form alternative sequences of study. Indeed, the book is often used as a text for
courses that cover the material in different orders. The most common of these alternatives
begins with material from Chapters 4 and 5 (Algorithms and Programming Languages) and
returns to the earlier chapters as desired. In contrast, I know of one case that starts with the
material on computability from Chapter 11. (In still other instances the text has been used in
“senior capstone” courses where it serves as a backbone from which students branch into proj-
ects in different areas.) I suggest the following sequence for those who simply want a con-
densed version of the novel:

PREFACE
Section Topic
1.1-1.4 Basics of data encoding and storage
2.1-2.3 Machine architecture and machine language
3.1-3.3,35,3.7 Operating systems and networking
4.1-4.4 Algorithms and algorithm design
5.1-5.4 Programming languages
6.1-6.2 The field of software engineering
7.1-7.2 Elementary data structures
8.1-8.2 Elementary file structures
9.1-9.2,9.6 Introduction to database technology
10.1-10.3 The field of artificial intelligence
11.1-11.2 Computability

In addition to the overall plot, there are several themes woven throughout the text. One
is that computer science is dynamic. The text repeatedly presents topics in a historical per-
spective, discusses the state of the art, and indicates directions of current research. Another
theme is the role of abstraction and the way in which abstract tools are used to control! com-

plexity.

Web Sites

This text is supported by a Web site at http://www.aw.com/brookshear. This is the text’s
official site maintained by Addison-Wesley. There you will find materials for both students
and teachers such as supporting software (for example, simulators for the machine used as an
example in Chapter 2 and described in Appendix C), laboratory manuals, links to additional
topics of interest, an instructor’s guide, and PowerPoint slides. You may also wish to check
out my personal Web site at http://mscs.mu.edu/~glennb. It is not very formal (and it is
subject to my whims), but I tend to keep some information there that you may find helpful.

To Students

I was introduced to the field of computing during my tour in the US Navy back in the late
1960s and early 1970s. (Yes, that makes me old—but it will happen to you also. Furthermore,
being old makes me wise so you should listen to what I say.) I spent most of these Navy days
maintaining the system software at the Navy’s computer installation in London, England.
After my tour was completed, 1 returned to school and finished my Ph.D. in 1975. I've been
teaching computer science and mathematics ever since.

A lot has changed in computer science over the years, but a lot has remained the same.
In particular, computer science was, and still is, fascinating. There are a lot of awesome things
going on out there. The development of the Internet, progress in artificial intelligence, and the
ability to collect and disseminate information in unheard of proportions are only some of the
things that will affect your life. You live in an exciting, changing world, and you have the
opportunity to be a part of the action. Take it!

I'm a bt of a nonconformist (some of my friends would say more than a bit) so when I set
out to write this text I didn’t always follow the advice I received. In particular, many argued

PREFACE

that certain material is too advanced for beginning students. But, I believe that if a topic is rel-
evant, then it is relevant even if the academic community considers it an “advanced topic.” You
deserve a text that presents a complete picture of computer science—not a watered-down ver-
sion containing artificially simplified presentations of only those topics that have been deemed
acceptable for introductory students.

Thus, I have not avoided topics. Instead I've sought better explanations. I have tried to pro-
vide enough depth to give you an honest picture of what computer science is all about. (There's
a difference between the fact that launching the space shuttle makes a lot of noise and the real-
ization that it rattles every bone in your body.) As in the case of spices in a recipe, you may
choose to omit some of the topics in the following pages, but they are there for you to taste if
you wish—and I encourage you to do so.

Finally I should point out that in any course dealing with technology, the details you learn
today may not be the details you will need to know tomorrow. The field is dynamic—that's part
of the excitement. This book will give you a current picture of the subject as well as a histor-
ical perspective. With this background you will be prepared to grow along with technology. I
encourage you to start the growing process now by exploring beyond this text. Learn to learn.

Thank you for the trust you have placed in me by choosing to read my book. As an author
I have an obligation to produce a manuscript that is worth your time. I hope you find that I
have lived up to this obligation.

To Instructors

There is more material in this text than can normally be covered in a single semester so do
not hesitate to skip topics that do not fit your course objectives or to rearrange the order as you
see fit. I wrote the book to be used as a course resource—not as a course definition. You will
find that, although the text follows a plot, the topics are covered in an independent manner
that allows you to pick and choose as you desire (see Figure 0.7 for a pictorial summary of the
entire text).

On the opening page of each chapter I have used asterisks to indicate those sections that
I suggest as optional —they delve more deeply into material or branch in directions you may
not wish to pursue. But these are merely suggestions. In particular, you will find that the con-
densed version of the text outlined earlier in this preface omits more than merely the “optional”
sections. To clarify, consider Chapter 7, Data Structures. Depending on your course objec-
tives, you may handle this chapter in any of the following ways—all of which I, myself, have
done at one time or another. First, in a “computer literacy” course, you may choose to skip the
entire chapter. If you merely want to introduce the subject of data structures, you would prob-
ably cover only Sections 7.1 and 7.2 (as suggested in the condensed version). If, in addition,
you want to present the basic structures themselves, you will need to cover Sections 7.1 through
7.6. Finally, if you want to extend the study to include customized data types or pointers in
machine language, you will want to include the “optional” Sections 7.7 and/or 7.8.

I also suggest that you consider covering some topics as reading assignments or encour-
age students to read the material not included in your course. I think we underrate students
if we assume that we have to explain everything in class. We should be helping them learn to
learn on their own.

I have already explained that the text follows a bottom-up, concrete-to-abstract organiza-
tion, but I want to expand on this a bit. As academics we too often assume that students will

PREFACE

appreciate our perspective of a subject—often one that we have developed over years of work-
ing in a field. As teachers we do better by presenting material from the student’s perspective.
This is why the text starts with data representation/storage, machine architecture, and machine
language. These are topics to which students readily relate—they can see the computer's com-
ponents, they can hold them, and most students will have bought and used them. By starting
the course with these topics, [see the students discovering answers to many of the “why”
questions they have been carrying for years and learning to view the course as practical rather .
than theoretical. From this beginning it is natural to move on to the more abstract issues of
algorithm discovery, design, representation, and complexity that those of us in the field see
as the main topics in the course.

We are all aware that students learn a lot more than we teach them directly, and the les-
sons they learn indirectly are often better absorbed than those that are studied explicitly. This
is significant when it comes to “teaching” problem solving. Students do not learn to solve prob-
lems by studying problem-solving methodologies as an isolated subject. They learn to solve
problems by solving problems. So I have included numerous problems throughout the text.
encourage you to use them and to expand on them.

Another topic that I place in this same category is that of professionalism, ethics, and
social responsibility. I do not believe that this material should be presented as an isolated sub-
Jject. Instead, it should surface when it is relevant, which is the approach I have taken in this
text. You will find that Sections 0.5, 3.7, 6.1, 6.8, 9.6, 10.1, and 10.7 present such topics as secu-
rity, privacy, liability, and social awareness in the context of networking, database systems,
software engineering, and artificial intelligence. You will also find that each chapter includes
a collection of questions called Social Issues that challenge students to think about the rela-
tionship between the material in the text and the society in which they live.

Pedagogical Features

This text is the product of many years of teaching. As a result, it is rich in pedagogical aids.
Paramount is the abundance of problems to enhance the student’s participation—over 1,000
in this seventh edition (1,010 to be precise). These are classified as Questions/Exercises, Chap-
ter Review Problems, and Social Issues. The Questions/Exercises appear at the end of each sec-
tion. They review the material just discussed, extend the previous discussion, or hint at related
topics to be covered later. These questions are answered in Appendix F.

The Chapter Review Problems appear at the end of each chapter (except for the introduc-
tory chapter). They are designed to serve as “homework” problems in that they cover the
material from the entire chapter and are not answered in the text.

Also at the end of each chapter are the questions in the Social Issues category. They are
designed for thought and discussion. Many of them can be used to launch research assign-
ments culminating in short written or oral reports.

Each chapter also ends with a list called Additional Reading that contains references to
other materials relating to the subject of the chapter. The Web sites, identified earlier in this
preface, are also good places to look for related material.

PREFACE

Seventh Edition

Although this seventh edition maintains the same chapter-by-chapter structure as previous edi-
tions of this text, topics have been added, some have been deleted, and much of the remain-
ing material has been rewritten to provide an up-to-date and relevant picture of the science
of computing.

The most significant distinctions between the sixth and seventh editions are pedagogical
in nature. Much of the material has been reorganized and rewritten to improve clarity and sim-
plify explanations. For example, Sections 2.1 and 2.2 (Computer Architecture and Machine
Language) have been reorganized, the formal introduction to algorithms in Section 4.1 has
been softened, the introduction to data structures (Section 7.1) has been reorganized, Section
7.7 (Customized Data Types) has been streamlined, the material on sequential and text files
has been combined into a single section (8.2), the material on computability (Sections 11.1-11.3)
has been rewritten. Moreover, numerous figures have been added and the artwork has been
improved extensively.

There are of course numerous additions of topics as well. These include techniques of
encoding sound (Chapter 1), expanded coverage of networking (Chapter 3), open-source devel-
opment (Chapter 6), additional material on copyrights and patents (Chapter 6), XML (Chap-
ter 8), and associative memory (Section 10.4). Moreover, numerous sidebars that expand the
material in the text have been added throughout.

You will also find that this seventh edition has a new design and art program that gives
the book a more “open” appearance than its predecessors. The goal is to make the material in
the text more accessible and less daunting to beginning students. I hope you like it.

Acknowledgments
I first thank those of you who have supported this book by reading and using it in previous edi-
tions. I am honored.

With each new edition, the list of those who have contributed to the book as reviewers and
consultants grows. Today this list includes J. M. Adams, C. M. Allen, D. C. S. Allison, B. Auern-
heimer, P. Bankston, M. Barnard, P. Bender, K. Bowyer, P. W. Brashear, C. M. Brown, B. Calloni,
M. Clancy, R. T. Close, D. H. Cooley, L. D. Cornell, M. J. Crowley, F. Deek, M. Dickerson, M.
J. Duncan, S. Fox, N. E. Gibbs, J. D. Harris, D. Hascom, L. Heath, P. B. Henderson, L. Hunt,
M. Hutchenreuther, L. A. Jehn, K. Korb, G. Krengz, J. Liu, T, J. Long, C. May, W. McCown, S.
J. Merrill, K. Messersmith, J. C. Moyer, M. Murphy, J. P. Myers, Jr, D. S. Noonan, S. Olariuy,
G. Rice, N. Rickert, C. Riedesel, J. B. Rogers, G. Saito, W. Savitch, R. Schlafly, J. C. Schlimmer,
S. Sells, G. Sheppard, Z. Shen, J. C. Simms, M. C. Slattery, J. Slimick, J. A. Slomka, D. Smith,
J. Solderitsch, R. Steigerwald, L. Steinberg, C. A. Struble, C. L. Struble, W. J. Taffe, J. Talburt,
P. Tromovitch, E. D. Winter, E. Wright, M. Ziegler, and one anonymous. To these individuals 1
give my sincere thanks.

I also thank the people at Addison-Wesley, Argosy Publishing, and Theurer Briggs Design
whose efforts are reflected within these pages. A team that goes though the process of pub-
lishing a book becomes a family. My publishing family has grown to include more wonderful
people during the production of this seventh edition.

My wife Earlene and daughter Cheryl have been tremendous sources of encouragement
over the years. [thank them for putting up with the author in me. They've seen that “the

......... PREFACE

book” can truly make an absent-minded professor absent minded. It's comforting to be able
to drift off into such academic pursuits as writing a book knowing that someone else is keep-
ing in touch with the real world. In particulas, on the morning of December 11, 1998, I survived
a heart attack because Earlene got me to the hospital in time. (For those of you in the younger
generation [should explain that surviving a heart attack is sort of like getting an extension on
a homework assignment.)

Finally, I thank my parents, to whom this book is dedicated, for instilling in me the impor-
tance of education. I close with the following endorsement whose source shall remain anony-
mous: “Our son’s book is really good. Everyone should read it.”

J. G. B.

Contents

Chapter 0 Introduction 1

0.1 The Study of Algorithms 2
0.2 The Origins of Computing Machines 5
0.3 The Science of Algorithms 9
0.4 The Role of Abstraction 10
0.5 Social Repercussions 12
Social Issues 14
Additional Reading 15

PART ONE: MACHINE ARCHITECTURE 17

Chapter 1 Data Storage 19

1.1 Bits and Their Storage 20

1.2 Main Memory 27

1.3 Mass Storage 30

1.4 Representing Information as Bit Patterns 36

1.5 The Binary System 43

1.6 Storing Integers 46

1.7 Storing Fractions 52

1.8 Data Compression 56

1.9 Communication Errors 61
Chapter Review Problems 65
Social Issues 70
Additional Reading 71

Chapter 2 Data Manipulation 73

2.1 Computer Architecture 74
2.2 Machine Language 76
2.3 Program Execution 81
2.4 Arithmetic/Logic Instructions 88
2.5 Communicating with Other Devices 92
2.6 Other Architectures 97
Chapter Review Problems 99
Social Issues 105
Additional Reading 106

xm..... . CONTENTS

PART TWO: SOFTWARE 107
Chapter 3 Operating Systems and Networks 109

Chapter 4

Chapter 5

Chapter 6

31
32
3.3
3.4
3.5
3.6
37

The Evolution of Operating Systems 110
Operating System Architecture 113
Coordinating the Machine’s Activities 119
Handling Competition Among Processes 123
Networks 128

Network Protocols 136

Security 144

Chapter Review Problems 148

Social Issues 151

Additional Reading 153

Algorithms 155

4.1
4.2
4.3
4.4
4.5
4.6

The Concept of an Algorithm 156
Algorithm Representation 159
Algorithm Discovery 166
Iterative Structures 172
Recursive Structures 181
Efficiency and Correctness 189
Chapter Review Problems 198
Social Issues 203

Additional Reading 204

Programming Languages 207

5.1
52
53
54
5.5
5.6
57

Historical Perspective 208

Traditional Programming Concepts 217
Procedural Units 228

Language Implementation 237
Object-Oriented Programming 245
Programming Concurrent Activities 251
Declarative Programming 254
Chapter Review Problems 259

Social Issues 263

Additional Reading 264

Software Engineering 267

6.1
6.2
6.3
6.4
6.5
6.6

The Software Engineering Discipline 268
The Software Life Cycle 270

Modularity 275

Design Methodologies 280

Tools of the Trade 284

Testing 288

6.7
6.8

CONTENTS

Documentation 290

Software Ownership and Liability 291
Chapter Review Problems 294

Social Issues 297

Additional Reading 298

PART THREE: DATA ORGANIZATION 299
Chapter 7 Data Structures 301

Chapter 8

Chapter 9

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

Data Structure Basics 302
Arrays 304

Lists 307

Stacks 311

Queues 314

Trees 318

Customized Data Types 327
Pointers in Machine Language 332
Chapter Review Problems 334
Social Issues 339

Additional Reading 340

File Structures 341

8.1
8.2
8.3
8.4

The Role of the Operating System 342
Sequential Files 344

Indexing 353

Hashing 357

Chapter Review Problems 363

Social Issues 366

Additional Reading 368

Database Structures 369

9.1
9.2
9.3
9.4
9.5
9.6

General Issues 370

The Layered Approach to Database Implementation 372
The Relational Model 375

Object-Oriented Databases 388

Maintaining Database Integrity 390

Social Impact of Database Technology 394

Chapter Review Problems 397

Social Issues 400

Additional Reading 402

R ¢1]]

CONTENTS

PART FOUR: THE POTENTIAL OF MACHINES 403
Chapter 10 Artificial Intelligence 405

Chapter 11

10.1 Intelligence and Machines 406

10.2 Understanding Images 409

10.3 Reasoning 412

10.4 Artificial Neural Networks 423

10.5 Genetic Algorithms 433

10.6 Other Areas of Research 436

10.7 Considering the Consequences 444
Chapter Review Problems 447
Social Issues 451
Additional Reading 452

Theory of Computation 455

11.1 Functions and Their Computation 456
11.2 Turing Machines 458
11.3 Universal Programming Languages 462
11.4 A Noncomputable Function 468
11.5 Complexity of Problems 473
11.6 Public Key Cryptography 481

Chapter Review Problems 489

Social Issues 493

Additional Reading 495

Appendixes 497

ASCII 499

Circuits to Manipulate Two’s Complement Representations 501
A Simple Machine Language 505

High-Level Language Program Examples 509

The Equivalence of Iterative and Recursive Structures 519
Answers to Questions/Exercises 521

HEOOW»

Index 563

&£ B A F 1 kR

. 0.1 The Study of Algorithms
In tro d u C tl O n 0.2 The Origins of Computing
Machines
0.3 The Science of Algorithms
0.4 The Role of Abstraction
0.5 Social Repercussions
Computer science is the discipline that seeks to build
a scientific foundation for such topics as computer
design, computer programming, information pro-
cessing, algorithmic solutions of problems, and the
algorithmic process itself. It provides the underpin-
nings for today's computer applications as well as the
foundations for tomorrow’s applications. This
breadth means that we cannot become knowledge-
able in computer science by studying only a few top-
ics as isolated subjects or by merely learning how to
use the computing tools of today. Rather, to under-
stand the science of computing, we must grasp the
scope and dynamics of a wide range of topics.
This book is designed to provide such a back-
ground. It presents an integrated introduction to the
subjects that constitute a typical university computer
science curriculum. The book can therefore serve as
a foundation for beginning computer science stu-
dents or as a source for other students seeking an
introduction to the science behind today’s computer-
oriented society.

CHAPTER ZERO INTRODUCTION

0.1 The Study of Algorithms

We begin with the most fundamental concept of computer science—that of an algo-
rithm. Informally, an algorithm is a set of steps that defines how a task is performed.!
For example, there are algorithms for constructing model airplanes (expressed in the
form of instruction sheets), for operating washing machines (usually displayed on
the inside of the washer’s lid), for playing music (expressed in the form of sheet
music), and for performing magic tricks (Figure 0.1).

Before a machine can perform a task, an algorithm for performing that task must
be discovered and represented in a form that is compatible with the machine. A
machine-compatible representation of an algorithm is called a program. Programs,
and the algorithms they represent, are collectively referred to as software, in contrast
to the machinery itself, which is known as hardware.

The study of algorithms began as a subject in mathematics. Indeed, the search for
algorithms was a significant activity of mathematicians long before the development
of today's computers. The major goal was to find a single set of directions that
described how all problems of a particular type could be solved. One of the best known
examples of this early research is the long division algorithm for finding the quotient
of two multiple-digit numbers. Another example is the Euclidean algorithm, discov-
ered by the ancient Greek mathematician Euclid, for finding the greatest common divi-
sor of two positive integers (Figure 0.2).

Once an algorithm for performing a task has been found, the performance of that
task no longer requires an understanding of the principles on which the algorithm is
based. Instead, the performance of the task is reduced to the process of merely fol-
lowing directions. (We can follow the long division algorithm to find a quotient or the
Euclidean algorithm to find a greatest common divisor without understanding why the
algorithm works.) In a sense, the intelligence required to solve the problem at hand
is encoded in the algorithm.

It is through this ability to capture and convey intelligence by means of algo-
rithms that we are able to build machines that display intelligent behavior. Conse-
quently, the level of intelligence displayed by machines is limited by the intelligence
that can be conveyed through algorithms. Only if we find an algorithm that directs the
performance of a task can we construct a machine to perform that task. In turn, if no
algorithm exists for solving a problem, then the solution of that problem lies beyond
the capabilities of machines.

The development of algorithms is therefore a major goal within the field of com-
puting, and consequently a significant part of computer science is concerned with
issues relating to that task. In turn, we can gain an understanding of the breadth of com-
puter science by considering some of these issues. One deals with the question of how
algorithms are discovered in the first place—a question that is closely related to that
of problem solving in general. To discover an algorithm for solving a problem is essen-
tially to discover a solution for the problem. It follows that studies in this branch of

'More precisely, an algorithm is an ordered set of unambiguous, executable steps that define a terminating
activity. These details are discussed in Chapter 4.

JR——

computer science draw heavily
from such areas as the psychology
of human problem solving and
theories of education. We consider
some of these ideas in Chapter 4.

Once an algorithm for solving
a problem has been discovered, the
next step is to represent the algo-
rithm so it can be communicated
to a machine or to other humans.
This means that we must trans-
form the conceptual algorithm into
a clear set of instructions and rep-
resent these instructions in an
unambiguous manner. Studies
emerging from these concerns
draw from our knowledge of lan-
guage and grammar and have led
to an abundance of algorithm rep-
resentation schemes, known as
programming languages, which
are based on a variety of approaches
to the programming process, known
as programming paradigms. We
consider some of these languages
and the paradigms on which they
are based in Chapter 5.

As computer technology has
been applied to more and more
complex problems, computer sci-
entists have found that the design
of large software systems involves
more than the development of the
individual algorithms for perform-
ing the required activities. It entails
designing the interaction among
these components as well. To deal
with such complexities, computer
scientists have turned to the well-
established field of engineering in
hopes of finding tools for handling
such problems. The result is the
branch of computer science known
as software engineering, which
today draws from such diverse

0.1

Figure 0.1

THE STUDY OF ALGORITHMS

An algorithm for a magic trick

Effect: The performer places some cards from a normal
deck of playing cards face down on a table and mixes
tham thoroughly while spreading them out on the table.
Then, as the audience requests either red or black cards,
the performer turns over cards of the requested color.

Secret and Patter:

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

From a normal deck of cards, select ten red cards
and ten black cards. Deat these cards face up
in two piles on the tabte according to color.

Announce that you have selected some red cards
and some black cards.

Pick up the red cards. Under the pretense of aligning
them into a small deck, hotd them face down in your
left hand and, with the thumb and first finger of your
right hand, putl back on each end of the deck so that
each card is given a slightly backward curve. Then
place the deck of red cards face down on the table
as you say, “Here are the red cards in this stack.”

Pick up the black cards. In a manner similar to that
in step 3, give these cards a slight forward curve.
Then return these cards to the tabie in a face-down
deck as you say, “And here are the black cards in
this stack.”

Immediately after returning the black cards to the
table, use both hands to mix the red and black
cards (still face down) as you spread them out
on the tabletop. Explain that you are thoroughy
mixing the cards.

As long as there are face-down cards on the table,
repeatedly execute the following steps:

6.1. Ask the audience to request either a red or a
black card.

8.2. If the color requested is red and there is a

face-down card with a concave appearance,

turn over such a card while saying,

“Here is a red card.”

6.3. If the color requested is biack and there is a

face-down card with a convex appearance,

turn over such a card while saying,

“Here is a black card.”

6.4. Otherwise, state that there are no more cards

of the requested color and turn over the

remaining cards to prove your claim.

