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PREFACE

This book is a systematic exposition of the part of general
topology which has proven useful in several branches of mathe-
matics. It is especially intended as background for modern
analysis, and I have, with difficulty, been prevented by my
friends from labeling it: What Every Young Analyst Should
Know. » :

The book, which is based on various lectures given at the
University of Chicago in 194647, the University of California
in 1948-49, and at Tulane University in 1950-51, is intended to
be both a reference and a text. These objectives are somewhat
inconsistent. In particular, as a reference work it offers a rea-
sonably complete coverage of the area, and this has resulted in a
more extended treatment than would normally be given in a
course. There are many details which are arranged primarily for
reference work; for example, I have taken some pains to include
all of the most commonly used terminology, and these terms are
listed in the index. On the other hand, because it is a text the
exposition in the earlier chapters proceeds at a rather pedestrian
pace. For the same reason there is a preliminary chapter, not a
part of the systematic exposition, which covers those topics reg-
uisite to the main body of work that I have found to be new to
many students. The more serious results of this chapter are
theorems on set theory, of which a systematic exposition is given
in the appendix. This appendix is entirely independent of the
remainder of the book, but with this exception each part of the

book presupposes all earlier developments.
v



vi PREFACE

There are a few novelties in the presentation. Occasionally
the title of a section is preceded by an asterisk; this indicates
that the section constitutes a digression. Other topics, many of
equal or greater interest, have been treated in the problems.
These problems are supposed to be an integral part of the dis-
cussion. A few of them are exercises which are intended simply
to aid in understanding the concepts employed. Others are
counter examples, marking out the boundaries of possible theo-
rems. Some are small theories which are of interest in them-
selves, and still others are introductions to applications of general
topology in various fields. These last always include references
so that the interested reader (that elusive creature) may continue
his reading. The bibliography includes most of the recent con-
tributions which are pertinent, a few outstanding earlier contri-
butions, and a few “cross-field”’ references.

I employ two special conventions. In some cases where mathe-
matical content requires “if and only if” and euphony demands
something less I use Halmos’ “iff.” The end of each proof is
signalized by J. This notation is also due to Halmos.

J. L. K.
Berkeley, California
February 1, 1955
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Chapter 0

PRELIMINARIES

The only prerequisites for understanding this book are a knowl-
edge of a few of the properties of the real numbers and a reason-
able endowment of that invaluable quality, mathematical ma-
turity. All of the definitions and basic theorems which are as-
sumed later are collected in this first chapter. The treatment is
reasonably self-contained, but, especially in the discussion of the
number system, a good many details are omitted. The most
profound results of the chapter are theorems of set theory, of
which a systematic treatment is given in the appendix. Because
the chapter is intended primarily for reference it is suggested
that the reader review the first two sections and then turn to
chapter one, using the remainder of the chapter if need arises.
Many of the definitions are repeated when they first occur in
the course of the work.

SETS

We shall be concerned with sets and with members of sets.
“Set,” “class,” “family,” “collection,” and *“aggregate’ are syn-
onymous,* and the symbol e denotes membership. Thus x e 4
( Yy , and Y. € P
if and only if x is a member (an element, a point) of 4. Two sets
are identical iff they have the same members, and equality is

* This statement is not strictly accurate. There are technical reasons, expounded in
the appendix, for distinguishing between two different sorts of aggregates. The term
“set” will be reserved for classes which are themselves members of classes. This distine-

tion is of no great importance here; with a single non-trivial exception, each class which
accurs in the discussion (prior to the appendix) is also a set.
1



2 ' PRELIMINARIES

always used to mean identity. Consequently, # = B if and only
if, for each x, ¥ ¢ 4 when and only when x ¢ B.

Sets will be formed by means of braces, so that {x: - .- (propo-
sition about x) - - -} is the set of all points x such that the propo-
sition about x is correct. Schematically, y e {x: -- . (proposition
about x) ---} if and only if the corresponding proposition about
y is correct. For example, if A is a set, then y e {x: x e 4]} iff
yed. Because sets having the same members are identical,
A4 = {x: x e A}, a pleasant if not astonishing fact. It is to be
understood that in this scheme for constructing sets “x” is a
dummy variable, in the sense that we may replace it by any
other variable that does not occur in the proposition. Thus
{x:xed} = {y:yed},but {x:xed} = {A4: Ae A).

There is a very useful rule about the construction of sets in
this fashion. If sets are constructed from two different proposi-
tions by the use of the convention above, and if the two propo-
sitions are logically equivalent, then the constructed sets are
identical. The rule may be justified by showing that the con-
structed sets have the same members. For example, if 4 and
B are sets, then {x: xed or xe B} = {x: xe B or x e A}, be-
cause y belongs to the first iff y e 4 or y € B, and this is the case
iff y e B or y e A, which is correct iff y is a member of the second
set. All of the theorems of the next section are proved in pre-
cisely this way.

SUBSETS AND COMPLEMENTS; UNION AND INTERSECTION

If 4 and B are sets (or families, or collections), then A is a
subset (subfamily, subcollection) of B if and only if each mem-
ber of A4 is a member of B. In this case we also say that A is
contained in B and that B contains 4, and we write the follow-
ing: 4 < Band B> 4. Thus 4 c B iff for each x it is true
that x e B whenever x e 4. The set A is a proper subset of B
(4 is properly contained in B and B properly contains o) iff
A c Band 4 # B. If 4is a subset of B and B is a subset of
C, then clearly A4 is a subset of C. If 4 € B and B c 4, then
A = B, for in this case each member of A4 is a member of B
and conversely.



SUBSETS AND COMPLEMENTS 3

The union (sum, logical sum, join) of the sets 4 and B, writ-

ten 4 U B, is the set of all points which belong cither to A or
to B; thatis, # U B = {x: xe 4 or xe B}. It is understood
that “or” is used here (and always) in the non-exclusive sense,
and that points which belong to both 4 and B also belong to
4 U B. The intersection (product, meet) of sets A and B, writ-
ten 4 N B, is the set of all points which belong to both 4 and
Bjthatis, 4 N B = {x:xe 4 and x e B}. The void set (empty
set) is denoted 0 and is defined to be {x: x ¢ ¥}. (Any proposi-
tion which is always false could be used here instead of x # x.)
The void set is a subset of every set A4 because each member of
0 (there are none) belongs to 4. The inclusions, 0 c 4 N B
< 4 < A4 U B, are valid for every pair of sets £ and B. Two
sets 4 and B are disjoint, or non-intersecting, iff 4 N B = 0;
that is, no member of 4 is also a member of B. The sets 4 and
B intersect iff there is a point which belongs to both, so that
A4 N Bs0. Ifa is a family of sets (the members of @ are sets),
then @ is a disjoint family iff no two members of @ intersect.
* The absolute complement of a set A, written ~, is {x:x ¢ A4}.
The relative complement of £ with respect toaset Xis X N ~ 4,
or simply X ~ 4. This set is also called the difference of X
and 4. For each set A it is true that ~~4 = A; the corre-
sponding statement for relative complements is slightly more
complicated and is given as part of 0.2,

One must distinguish very carefully between “member” and
“subset.” The set whose only member is  is called singleton x
and is denoted {x}. Observe that {0} is not void, since 0 ¢ {0},
and hence 0 ¢ {0}. In general, x e 4 if and only if {x} < 4.

The two following theorems, of which we prove only a part,
state some of the most commonly used relationships between the
various definitions given above. These are basic facts and will -
frequently be used without explicit reference.

} Tueorem Let A and B be subsets of a set X. Then 4 < B if
and only if any one of the following conditions holds:

ANB=4, B=4UB, X~BcX~AJ,
ANX~B=0, or X~A UB-=2X.



