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Preface

This book is a record of a course on functions of a real variable, addressed
to first-year graduate students in mathematics, offered in the academic year
1985-86 at the University of Texas at Austin. It consists essentially of the
day-by-day lecture notes that I prepared for the course, padded up with the
exercises that I seemed never to have the time to prepare in advance; the
structure and contents of the course are preserved faithfully, with minor
cosmetic changes here and there.

Two facts are worth noting: (1) the lecture notes were prepared (if not
always delivered) with exceptional care, as my son was enrolled in the class
and I confess that I was trying especially hard to put my best foot forward;
(2) the text does not reflect the fact that I wasted a certain amount of
time doing Lebesgue’s “Fundamental theorem of calculus” at the end of
the first semester, ‘discovered’ E.J. McShane’s lovely exposition during the
semester break, and was so struck by the superiority of his exposition that
I did the topic all over again at the beginning of the second semester. It is
only the ‘second pass’ that is recorded here (in Chapter 5); the time saved
by doing it right in the first place should be ample for including the very
few topics I added that were not covered in the actual course (notably, the
Riesz representation theorem, included here as Theorem 6.7.11—the 11th
item in §7 of Chapter 6).

The choice of topics and the order in which they are taken up was guided
by the following principles:

(1) The most important things should come first (it is a little intellec-
tually arrogant to make such judgments, but that’s what a teacher is paid
to do—and the student need not, and sometimes should not, agree). When
planning the course, at each topic I kept in mind the question: “If the stu-
dent is obliged to drop out tomorrow—or who takes only the first semester,
as is frequently the case-——will he or she have been exposed to the topics
that are most likely to be crucial in his or her mathematical development?”

(2) Every subject becomes fatiguing after a while, and when fatigue sets
in, learning converges rapidly to zero. For example, the course syllabus
called for a full-dress treatment of measure and integration, but consuming
it all in one gulp leads to indigestion (I ask forgiveness of all the students
on whom I inflicted one-semester or even one-year courses in Measure and
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viii _ Preface

Integration; we got some good out of it and I amassed enough material for
a book on the subject, but it was not the best use of our time). Therefore,
the theme of measure theory must be broken up into digestible units and
alternated with other themes for the sake of variety. The same is true of
topology and function spaces: a generous portion, but not all in one gulp.

(3) The house being built, to be sturdy and serviceable, must have a foun-
dation: the first part of the course must come to grips with the real numbers
(they have to be constructed rigorously from the rationals), the axioms of
set theory (just visiting!) and the concepts of cardinality and ordinality
(indispensable tools in grappling with infinity, one of the mathematician’s
principal occupations); for an eloquent essay on the importance of taking
up such matters, I refer the reader to the Preface of Irving Kaplansky’s Set
theory and metric spaces {2nd edn., Chelsea, New York, 1977].

A certain amount of inefficiency is introduced in the passage from con-
crete to abstract (measure spaces), special to general (metric and topolog-
ical spaces), finite to infinite (product measure, signed measures), real to
complex (function spaces), and so on. This seemed not burdensome in the
classroom, where a few words often sufficed to reset the stage for the reap-
pearance of a subject, but in print it is necessary to revisit a considerable
amount of notation and definitions, especially when related discussions are
widely separated in time (pages). The benefits of recurrent themes (moti-
vation, boredom avoidance) seemed worth the inefficiency in class; I hope
the reader will find that they also make the book easier to read.

Can the topics taken up be treated more effectively? Assuredly. Could
I have chosen more important topics to take up? At the time, I thought
not, and, a decade later, I feel sufficiently comfortable with the choices to
warrant putting the lecture notes into a more presentable form; the ultimate
verdict, as always, is the reader’s.

Austin, Texas Sterling K. Berberian
September 1996
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CHAPTER 1

Foundations

§1.1. Logic, set notations

§1.2. Relations

§1.3. Functions (mappings)

§1.4. Product sets, Axiom of Choice

§1.5. Inverse functions

§1.6. [Equivalence relations, Partitions, Quotient Sets
§1.7. Order relations

§1.8. Real numbers

§1.9. Finite and infinite sets

§1.10. Countable and uncountable sets

§1.11. Zorn’s Lemma, the Well-Ordering theorem
§1.12. Cardinality

§1.13. Cardinal arithmetic

§1.14. Ordinality

§1.15. Extended real numbers

§1.16. Convergence in R

The reader will already have a working familiarity with the concepts of
set and function. Apart from a review of basic concepts and notations, the
chapter is mostly about coping with infinity (or exploiting it—it depends
on one’s point of view). Our viewpoint (generally called ‘naive’) is that
infinite sets exist and they are not to be feared. Some of the axioms of
set theory (the Axiom of Choice, the Continuum Hypothesis) are more
controversial than the others; whether or not one admits them is a matter
of professional lifestyle.! In this text, the axiom of choice and its logically
equivalent forms (§1.11) are admitted and are invoked whenever convenient.
The continuum hypothesis is only mentioned briefly (§1.13); although it is
not used anywhere in the text, it is instructive to understand the terms
needed to state it.

! Assuming the usual (Zermelo-Fraenkel) axioms of set theory are consistent [cf. I.
Kaplansky, Set theory and metric spaces, Chapter 3, 2nd edn., Chelsea, New York,
1977). If ZF goes down the tube, we all go down with it.
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2 1. Foundations

1.1. Logic, Set Notations*
1.1.1. A ‘short list’ of useful symbols:

Notation Read

z€A z is an element of the set A

for all, for every

there exists (at least one)

there exists a unique (one and only one)
such that (having the following properties)
and

or (non-exclusive)

implies

if and only if (a fusion of = and « )
negation (of a proposition)

1Py <puUmw
>

1.1.2. A proposition is a statement that is either true or false (but not
both). If P is a proposition, its negation ~ P is the proposition that
is false when P is true, true when P is false. For example, in ordinary
arithmetic, if P is the (false) proposition «3 < 23> then ~ P is the (true)
proposition «2 < 3»; more generally, if P is «z < y» then ~ P is
Y <IT>.

1.1.3. Before explaining the usage of the other symbols, it helps to have
a repertory of specific sets:

Symbol Meaning

the set {1,2,3,...} of all positive integers

the set {0,1,2,3,...} of all nonnegative integers

the set {0,+1,42,+3,...} of all integers

the set of all rational numbers m/n (m,n € Z; n # 0)

the set of all real numbers

the set of all complez numbers z =z +1iy (z,y € R, i* = -1)

aEoNZS

The construction of R from the rational field Q is sketched in §1.8; the
construction of C' from R is elementary algebra. The notations R and
C are standard; N, Z and Q are ‘fairly standard’ (i.e., widely used);
P is improvised (no consensus!).

1.14.If P and Q are propositions, then P = Q means that if P is
true then Q is also true. For example, the statement

z€Z = z€Q

1 suggest first glancing at the tables in this section; if everything looks familiar, the
section can be omitted.



§1.1. Logic, Set Notations 3
says that every integer is a rational number; it is true. The converse state-
ment (with implication pointing in the reverse direction)

z€Z < z€Q

happens to be false, but it is a legitimate statement. (The rules of ordinary
language do not abolish lies.) When we demonstrate that P = Q, we say
that we have proved a theorem, with hypothesis P and conclusion Q.
Sometimes (often!) a theorem P = Q is proved by showing that ~ Q =
~ P (the contrapositive form of P = Q).

1.1.5. If propositions P and Q imply each other, they are said to be
logically equivalent, written P & Q (or P = Q); thus

PeQ)=FP=Q&(Q=P).

For example, in ordinary arithmetic,
z=y & (z<y) & (y<2).
The basis of proofs in contrapositive form is the equivalence
P=2Q)=(~Q=~P)..

An equivalence of some depth: for a real number z,

>0 & (3yeR 3> r=1y?)
{translate it from ‘symbolese’ into ordinary language!). -

1.1.6. The symbol V is sometimes used literally, sometimes as a ‘stage-
setter’ (or ‘quantifier’) indicating the set in which a statement is formulated.
Consider, for example, the statements

>0 (VzeR)
Vrze{1,2,3,4))z=1 & z?<4.

In the first example, the condition on z (z? > 0) is true for every =z
in the set R, thus the statement simply says that z? is nonnegative for
every real number z; here, V is used in its ordin~ry, literal sense. In the
second example, the condition on z (the assertion of an equivalence <)
is also true for every z in theset {1,2,3,4} (albeit in a vacuous way for
Tz =2, 3 or 4), though its constituent pieces (z = 1, z2 < 4) are not.

1.1.7. The mathematical ‘or’ is used ‘permissively’ rather than ‘exclu-
sively’; thus, the statement

(ze A)vV(z€B)
does not exclude the possibility that both € A and z € B.

118. If A and B are sets such that £ € A = z € B, then A
is called a subset of B, written A C B (alternatively, B is a superset



4 1. Foundations

of A, written B D A). For example, the set E of even integers is a subset
of Z; it can be specified as the set of all integers n such that n =2k for
some integer k, a recipe conveniently expressed by

E={neZ: n=2k forsome k€Z}

(the colon is read as “such that”). More generally, if X is a set and if, for
each z € X, P(z) is a proposition involving z, then

{zeX: P(z)}

denotes the set of all elements = of X for which P(z) is true; this can
be shortened to {z: P(x)} when there is no doubt as to the ‘universal
set’ X from which the elements z are drawn. For example,

{zeZ: -2<z<4}={-2,-1,0,1,2,3}
(a set with six elements), whereas
{zeR: —-2<z<4}=[-2,4)

(a semi-closed interval); unless a universal set (such as Z or R) is spec-
ified, the notation {z: —2 <z <4} is ambiguous. An expression such
as {r: z € A& z € B} is unambiguous, since it can be rewritten as
{zxe A: z€B}.

1.1.9. Fix a universal set X andlet A, B, C,...besubsetsof X.The
following table lists the most basic set-theoretic notations (others follow in
later sections):

Symbol Meaning

z¢g A ~ (z € A) (thatis, £ not an element of A)
ACB €A = B
A¢B ~(ACBj(thatis, 3z€ A > z¢B)
A=B z€A & zeB (thatis, ACB and BCA)
A#B ~ (A =B) (that is, either AZ B or B¢ A)
AgB ACB&A#B (thatis, ACB and B¢Z A;
A is then said to be a proper subset of B,
and B is said to contain A properly)
BDOA ACB
ANB {z: z € A&z B} (the intersection of A and B)
AUB {z: z€ A or zeB} (the union of A and B)
CxA {zeX: z¢ A} (the complement of A in X)
A-B {z: z€ A& ¢ B} (the difference ‘A minus B’,
or the ‘relative complement’ of B in A)

The complement of A in X is also written CA or A’;thus A-B =
ANCB=ANB, (AY=A, AUA'=X and ANA' =0 (the empty
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set). Some other useful formulas are listed in the exercises for convenient
reference.

Finally, a caution about the use of the words ‘all’ and ‘every’:

1.1.10. (Russell’s parador)? The statement “There exists a set of which
every set is a member” is nonsense. For, if U were such a set, then its
subset

A={zecU: z¢z}

would be a member of U, leading inexorably to a contradiction: either
A € A (in which case A ¢ A by the definition of A),or A ¢ A (in
which case A € A by the definition of A).

Moral. The words ‘all’ and ‘every’ are very big (too big); to play it safe,
qualify by operating within a known set. The following usage of ‘all’ is
prudent: ‘The set of all one-element subsets of P’; the sets A in question
are qualified by the condition A C P. The expression ‘The set of all one-
element sets’ is asking for trouble. {Trouble: Let E be ‘the set of all
one-element sets’, then consider the set F of all sets A that contain an
element of E (in other words, A # @); we are now face to face with
Fu {@}, the dreaded ‘set of all sets’.}

Exercises

1. Let X beaset, A,B,C subsets of X, A’ the complement of A.
(i) An(BUC)=(ANB)U(ANC)

(i) AuU(BNC)=(AUB)N(AUC)

(ii) ACB & A'DP

(iii) (AUBY =A'NB’

(iii') (ANB)Y =A'UB’

(iv ACB & A=AnNB

(iv) ACB & B=AUB

2. The description of a “proposition” in 1.1.2 can be expressed as follows:

For every proposition P, PV (~ P) is true (low of the ezcluded middle)
and P A (~ P) is false (law of contradiction).

1.2. Relations
1.2.1. Definition. If X and Y are sets, the cartesian product of X

and Y (in that order), denoted X x Y, is the set of all ordered pairs

2 Bertrand Russell (1872-1970).
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(z,y) with X and y€Y:

XxY={(z,v): X &yeY},
with the understanding that

@y =@y) e z=&y=y.

One calls z and y the first and second coordinates of (z,y) (cf. Fig-
ure 1).

.- X
z

Figure 1

1.2.2. Definition. A relation from X to Y (in that order) is a subset
R of XxY:

RcCcXxY

(cf. Figure 2). If (z,y) € R we write zRy (read “z is related by R
to y”),andif (z,y) ¢ R we write zR'y (an appropriate notation, since
(z,y) belongs to the complement R’ of R).If X =Y wesay that R is
a relation in X.

Figure 2
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1.2.3. Ezample. Let X = {1,2,3,4} and let R be the usual relation
“<” in X; as a set of ordered pairs,
R = {(1,2), (1,3), (1,4), (2,3), (2,4), (3, 4)}.

1.2.4. Ezample. Let X = {1,2,3,4} and suppose that zRy means that
zly (z is a divisor of y). Then

R={(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4, 4)}.

1.2.5. Ezample. If R isarelationin X and A isa subset of X, then
RN (A x A) is arelation in A, said to be induced in A by R.

1.2.6. Definition. Let R be a relation from X to Y (1.2.2). For each
subset A of X, we write

R(A)={yeY: zRy forsome z€ A}

and call it the (direct) image of A under R; for each subset B of b
we write

R™}(B)={zreX: zRy for some ye B}
and call it the inverse image of B under R (cf. Figure 3).

Y

J

i gladd ]

al

e -_ X

A R7(B)
Figure 3

1.2.7. Remarks. With notations as in 1.2.6, one can think of R™! asa
relation from Y to X, where

yR™'z & zRy,
that is,
R ={(y,2): (z,9) €R};



