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Preface

“Ich kann es nun einmal nicht lassen, in diesen Drama von
Mathematik und Physik—die sich im Dunkeln befruchten,
aber von Angesicht zu Angesicht so gerne einander verkennen
und verleugnen—die Rolle des (wie ich geniigsam erfuhr, oft
unerwiinschten) Boten zu spielen.”

Hermann Weyl

It is said that mathematics is the language of Nature. If so, then physics is its
poetry. Nature started to whisper into our ears when Egyptians and Babylonians
were compelled to invent and use mathematics in their day-to-day activities. The
faint geometric and arithmetical pidgin of over four thousand years ago, suitable
for rudimentary conversations with nature as applied to simple landscaping, has
turned into a sophisticated language in which the heart of matter is articulated.
The interplay between mathematics and physics needs no emphasis. What
may need to be emphasized is that mathematics is not merely a tool with which the
presentation of physics is facilitated, but the only medium in which physics can
survive. Just as language is the means by which humans can express their thoughts
and without which they lose their unigue identity, mathematics is the only language
through which physics can express itself and without which it loses its identity.
And just as language is perfected due to its constant usage, mathematics develops
in the most dramatic way because of its usage in physics. The quotation by Weyl
above, an approximation to whose translation is ““In this drama of mathematics
and physics—which fertilize each other in the dark, but which prefer to deny and
misconstrue each other face to face—I cannot, however, resist playing the role
of a messenger, albeit, as I have abundantly learned, often an unwelcome one,’
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is a perfect description of the natural intimacy between what mathematicians and
physicists do, and the unnatural estrangement between the two camps. Some of the
most beautiful mathematics has been motivated by physics (differential equations
by Newtonian mechanics, differential geometry by general relativity, and operator
theory by quantum mechanics), and some of the most fundamental physics has been
expressed in the most beautiful poetry of mathematics (mechanics in symplectic
geometry, and fundamental forces in Lie group theory).

I do not want to give the impression that mathematics and physics cannot
develop independently. On the contrary, it is precisely the independence of each
discipline that reinforces not only itself, but the other discipline as well-—just as the
study of the grammar of a language improves its usage and vice versa. However,
the most effective means by which the two camps can accomplish great success
is through an intense dialogue. Fortunately, with the advent of gauge and string
theories of particle physics, such a dialogue has been reestablished between physics
and mathematics after a relatively long lull.

Level and Philosophy of Presentation

This is a book for physics students interested in the mathematics they use. It
/is also a book for mathematics students who wish to see some of the abstract
ideas with which they are familiar come alive in an applied setting. The level of
presentation is that of an advanced undergraduate or beginning graduate course (or
sequence of courses) traditionally called “Mathematical Methods of Physics” or
some variation thereof. Unlike most existing mathematical physics books intended
for the same audience, which are usually lexicographic collections of facts about
the diagonalization of matrices, tensor analysis, Legendre polynomials, contour
integration, etc., with little emphasis on formal and systematic development of
topics, this book attempts to strike a balance between formalism and application,
between the abstract and the concrete.

I have tried to include as much of the essential formalism as is necessary to
render the book optimally coherent and self-contained. This entails stating and
proving a large number of theorems, propositions, lemmas, and corollaries. The .
benefit of such an approach is that the student will recognize clearly both the power
and the limitation of a mathematical idea used in physics. There is a tendency on the
part of the novice to universalize the mathematical methods and ideas encountered
in physics courses because the limitations of these methods and ideas are not
clearly pointed out.

There is a great deal of freedom in the topics and the level of presentation that
instructors can choose from this book. My experience has shown that Parts I, II,
I, Chapter 12, selected sections of Chapter 13, and selected sections or examples
of Chapter 19 (or a large subset of all this) will be a reasonable course content for
advanced undergraduates. If one adds Chapters 14 and 20, as well as selected topics
from Chapters 21 and 22, one can design a course suitable for first-year graduate
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students. By judicious choice of topics from Parts VII and VIII, the instructor
can bring the content of the course to a more modern setting. Depending on the
sophistication of the students, this can be done either in the first year or the second
year of graduate school.

Features

To better understand theorems, propositions, and so forth, students need to see
them in action. There are over 350 worked-out examples and over 850 problems
(many with detailed hints) in this book, providing a vast arena in which students
can watch' the formalism unfold. The philosophy underlying this abundance can
be summarized as “An example is worth a thousand words of explanation.” Thus,
whenever a statement is intrinsically vague or hard to grasp, worked-out examples
angd/or problems with hints are provided to clarify it. The inclusion of such a
large number of examples is the means by which the balance between formalism
and application has been achieved. However, although applications are essential
in understanding mathematical physics, they are only one side of the coin. The
theorems, propositions, lemmas, and corollaries, being highly condensed versions
of knowledge, are equally important.

A conspicuous feature of the book, which is not emphasized in other compa-
rable books, is the attempt to exhibit—as much as it is useful and applicable—
interrelationships among various topics covered. Thus, the underlying theme of a
vector space (which, in my opinion, is the most primitive concept at this level of
presentation) recurs throughout the book and alerts the reader to the connection
between various seemingly unrelated topics.

Another useful feature- is the presentation of the historical setting in which
men and women of mathematics and physics worked. I have gone against the
trend of the “ahistoricism” of mathematicians and physicists by summarizing the
life stories of the people behind the ideas. Many a time, the anecdotes and the
historical circumstances in which a mathematical or physical idea takes form can
go a long way toward helping us understand and appreciate the idea, especially if
the interaction among—and the contributions of—all those having a share in the
creation of the idea is pointed out, and the historical continuity of the development
of the idea is emphasized.

To facilitate reference to them, all mathematical statements (definitions, theo-
rems, propositions, lemmas, corollaries, and examples) have been numbered con-
secutively within each section and are preceded by the section number. For exam-
ple, 4.2.9 Definition indicates the ninth mathematical statement (which happens
to be a definition) in Section 4.2. The end of a proof is marked by an empty square
[J, and that of an example by a filled square B, placed atthe right margin of each.

Finally, a comprehensive index, a large number of marginal notes, and many
explanatory underbraced and overbraced comments in equations facilitate the use
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.and comprehension of the book. In this respect, the book is also useful as a refer-

ence.

Organization and Topical Coverage

Aside from Chapter 0, which is a collection of purely mathematical concepts,
the book is divided into eight parts. Part I, consisting of ‘the first four chapters, is
devoted to a thorough study of finite-dimensional vector spaces and linear operators
defined on them. As the unifying theme of the book, vector spaces demand careful
analysis, and Part I provides this in the more accessible setting of finite dimension in
alanguage that is conveniently generalized to the more relevant infinite dimensions,
the subject of the next part. -

Following a brief discussion of the technical difficulties associated with in-
finity, Part II is devoted to the two main infinite-dimensional vector spaces of
mathematical physics: the classical orthogonal polynomials, and Fourier series
and transform.

Complex variables appear in Part III. Chapter 9 deals with basic properties of
complex functions, complex series, and their convergence. Chapter 10 discusses
the calculus of residues and its application to the evaluation of definite integrals.
Chapter 11 deals with more advanced topics such as multivalued functions, analytic
continuation, and the method of steepest descent.

Part IV treats mainly-ordinary differential equations. Chapter 12 shows how
ordinary differential equations of second order arise in physical problems, and
Chapter 13, consists of a formal discussion of these differential equations as well
as methods of solving them numerically. Chapter 14 brings in the power of com-
plex analysis to a treatment of the hypergeometric differential equation. The last
chapter of this part deals with the solution of differential equations using integral
transforms.

Part V starts with a formal chapter on the theory of operator and their spectral
decomposition in Chapter 16. Chapter 17 focuses on a specific type of operator,
namely the integral-operators and their corresponding integral equations. The for-
malism and applications of Sturm-Liouville, theory appear in Chapters 18 and 19,
respectively.

The entire Part VI is devoted to a discussion of Green’s functions. Chapter
20 introduces these functions for ordinary differential equations, while Chapters
21 and 22 discuss the Green’s functions in an m-dimensional Euclidean space.
Some of the derivations in these last.two chapters are new and, as far as Itknow,
unavailable anywhere else,

Parts VII and VIII contain a thorough discussion of Lie groups and their ap-
plications. The concept of group is introduced in Chapter 23. The theory of group
representation, with an eye on its application in quantum mechanics, is discussed
in the next chapter. Chapters 25 and 26 concentrate on tensor algebra and ten-
sor analysis on manifolds. In Part VIII, the concepts of group and manifold are
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brought together in the context of Lie groups. Chapter 27 discusses Lie groups
and their algebras as well as their representations, with special emphasis on their
application in physics. Chapter 28 is on differential geometry including a brief
introduction to general relativity. Lie’s original motivation for constructing the
groups that bear his name is discussed in' Chapter 29 in the context of a systematic
treatment of differential equations using their symmetry groups. The book ends in
a chapter that blends many of the ideas developed throughout the previous parts
in order to treat variational problems and their symmetries. It also provides a most
fitting example of the claim made at the beginning of this preface and one of the
most beautiful results of mathematical physics: Noether’s theorem on the relation
between symmetries and conservation laws.
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Note to the Reader

Mathematics and physics are like the game of chess (or, for that matter, like any
game)—you will learn only by “playing” them. No amount of reading about the
game will make you a master. In this book you will find a large number of examples
and problems. Go through as many examples as possible, and try to reproduce them.
Pay particular attention to sentences like “The reader may check ... ” or “It is
straightforward to show ... ” These are red flags warning you that for a good
understanding of the material at hand, you need to provide the missing steps. The
problems often fill in missing steps as well; and in this respect they are essential
for a thorough understanding of the book. Do not get discouraged if you cannot get
to the solution of a problem at your first attempt. If you start from the beginning
and think about each problem hard enough, you will get to the solution, and you
will see that the subsequent problems will not be as difficult.

The extensive index makes the specific topics about which you may be in-
terested to learn easily accessible. Often the marginal notes will help you easily
locate the index entry you are after.

I have included a large collection of biographical sketches of mathematical
physicists of the past. These are truly inspiring stories, and I encourage you to read
them. They let you see that even under excruciating circumstances, the human mind
can work miracles. You will discover how these remarkable individuals overcame
the political, social, and economic conditions of their time to let us get a faint
glimpse of the truth. They are our true heroes.
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