O'REILLY

Algorithms
in a Nutshell

BiEFARFM (k)

George T. Heineman,
%8 R'% iRt Gary Pollice, Stanley Selkow &

552hi

HiERAF wom

Algorithms in a Nutshell

George T. Heineman, Gary Pollice,
Stanley Selkow #

. ®
3eijing « Boston - Farnham - Sebastopol « Tokyo OREILL

O'Reilly Media, Inc. ¥4 %= f A 5) AR 3L AR

IR FEAFHRE

BB R4 B (CIP) $ 17

B AFM E 2. B/ (TG -T-HES
(George T. Heineman), (&) /il B - 3 %1 #fr (Gary Pollice),
(E)HTHE F) - %€ 72 Bk (Stanley Selkow). — R EIA. —
B A A m KA Rt 5 2017.10

- 4 JEL 3 : Algorithms in a Nutshell, 2E

ISBN 978 -7-5641-7373-9

L Q& 1. OFF - Otu- Off--- M. ORFiHHE
H—EEHie—HARFM—H L N. OTP301.6- 62

[R A B 54 CIP 48 4% 57 (2017) 195474 5
E.10- 2017 - 341 5

© 2016 by O’Reilly Media, Inc.

Reprint of the English Edition, jointly published by O’Reilly Media, Inc. and Southeast University
Press, 2017. Authorized reprint of the original English edition, 2017 O'Reilly Media, Inc., the
owner of all rights to publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.
% X B Al O'Reilly Media, Inc. i #& 2016,

EX YT G EH KR AL R 2017, Y PR HIR A4 B AF] A A A
4 F i % —— O'Reilly Media, Inc.89# 7T,

AT AR P EFT AEAETHRI LR AAEABXNES .

FRHAFMN % 2 RGEENO

HRR & AT : AR R KA AL

#o dk: BEAUMEEE2E HR%E 210096
WO A YLEE

& Hk : http://www.seupress.com

B, Wi 4 : press@seupress.com

Ep Wl B T R = B R A R F

JF A . 787 BK X 980 2K 16 FF A<
Ep . 24.5

B2 . 423 FF

Jifit Y. 2017 4F 10 A58 1M

En Y. 2017 4E 10 A% 1 KENRI

4 2. ISBN 978 - 7- 5641 - 7373 -9

#fr: 96.00 JC

A E A R P E BT R . BIEGEE) : 025- 83791830

Preface to the Second Edition

Revising a book for a new edition is always an arduous task. We wanted to make
sure that we retained all the good qualities of the first edition, published in 2009,
while fixing some of its shortcomings and adding additional material. We continue
to follow the principles outlined in the first edition:

« Use real code, not just pseudocode to describe algorithms

o Separate the algorithm from the problem being solved

« Introduce just enough mathematics

« Support mathematical analysis empirically
As we updated this second edition, we reduced the length of our text descriptions
and simplified the layout to make room for new algorithms and additional material.

We believe we continue to offer a Nutshell perspective on an important area of com-
puter science that has significant impact on practical software systems.

Changes to the Second Edition

In updating this book for the second edition, we followed these principles:

Select New Algorithms
After the publication of the first edition, we often received comments such as
“Why was Merge Sort left out?” or “Why didn't you cover Fast Fourier Trans-
form (FFT)?” It was impossible to satisfy all of these requests, but we were able
to add the following algorithms:

« Fortune’s algorithm, to compute the Voronoi Diagram for a set of points
(“Voronoi Diagram” on page 268)

vii

Merge Sort, for both internal memory data as well as external files
(“Merge Sort” on page 81)

+ Multithreaded Quicksort (“Parallel Algorithms” on page 332)
« AVL Balanced Binary Tree implementation (“Solution” on page 121)

o A new Spatial Algorithms chapter (Chapter 10) contains R-Trees and
Quadtrees

In total, the book covers nearly 40 essential algorithms.

Streamline Presentation
To make room for the new material, we revised nearly every aspect of the first
edition. We simplified the template used to describe each algorithm and
reduced the accompanying descriptions.

Add Python Implementations
Rather than reimplement existing algorithms in Python, we intentionally used
Python to implement most of the new algorithms added.

Manage Code Resources

The code for the first edition was made available as a ZIP file. We have since
transitioned to a GitHub repository (https://github.com/heineman/algorithms-
nutshell-2ed). Over the years we improved the quality of the code and its docu-
mentation. We have incorporated a number of blog entries that were written
after the publication of the first edition. There are over 500 unit test cases and
we use code coverage tools to ensure coverage of 99% of our Java code. In total,
the code repository consists of over 110 KLOC.

‘Audience

We intend this book to be your primary reference when seeking practical informa-
tion on how to implement or use an algorithm. We cover a range of existing algo-
rithms for solving a large number of problems and adhere to the following
principles:

« When describing each algorithm, we use a stylized template to properly frame
each discussion and explain the essential points of each algorithm

« We use a variety of languages to implement each algorithm (including C, C++,
Java, and Python). In doing so, we make concrete the discussion of algorithms
and speak using languages you are already familiar with

« We describe the expected performance of each algorithm and empirically pro-
vide evidence to support these claims

We intend this book to be most useful to software practitioners, programmers, and
designers. To meet your objectives, you need access to a quality resource that
explains real solutions to practical algorithms you need to solve real problems. You
already know how to program in a variety of programming languages. You know

vii | Preface

about the essential computer science data structures, such as arrays, linked lists,
stacks, queues, hash tables, binary trees, and undirected and directed graphs. You
don’t need to implement these data structures, since they are typically provided by
code libraries.

We expect you will use this book to learn about tried and tested solutions to solve
problems efficiently. You will learn some advanced data structures and novel ways
to apply standard data structures to improve the efficiency of algorithms. Your
problem-solving abilities will improve when you see the key decision for each algo-
rithm that make for efficient solutions.

Conventions Used in This Book

The following typographical conventions are used in this book:

Code
All code examples appear in this typeface.

This code 1is replicated directly from the code repository and
reflects real code. All code 1listings are “pretty-printed” to
highlight the appropriate syntax of the programming language.

Italic
Indicates key terms used to describe algorithms and data structures. Also used
when referring to variables within a pseudocode description of an example.

Constant width
Indicates the name of actual software elements within an implementation, such
as a Java class, the name of an array within a C implementation, and constants
such as true or false.

We cite numerous books, articles, and websites throughout the book. These cita-
tions appear in text using parentheses, such as (Cormen et al., 2009), and each chap-
ter closes with a listing of references used within that chapter. When the reference
citation immediately follows the name of the author in the text, we do not duplicate
the name in the reference. Thus, we refer to the Art of Computer Programming
books by Donald Knuth (1998) by just including the year in parentheses.

All URLs used in the book were verified as of January 2016, and we tried to use only
URLs that should be around for some time. We include small URLs, such as http://
www.oreilly.com, directly within the text; otherwise, they appear in footnotes and
within the references at the end of a chapter.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/heineman/algorithms-nutshell-2ed.

Preface | ix

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You do
not need to contact us for permission unless youre reproducing a significant por-
tion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing a CD-ROM of
examples from O’Reilly books does require permission. Answering a question by
citing this book and quoting example code does not require permission. Incorporat-
ing a significant amount of example code from this book into your product’s docu-
mentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: "Algorithms in a Nutshell, Second
Edition by George T. Heineman, Gary Pollice, and Stanley Selkow. Copyright 2016
George Heineman, Gary Pollice and Stanley Selkow, 978-1-4919-4892-7”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online

. Safari Books Online is an on-demand digital

‘ Safa r i library that delivers expert content in both book

' and video form from the world’s leading authors
in technology and business.

Technology professionals, software developers, web designers, and business and
creative professionals use Safari Books Online as their primary resource for
research, problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams,
Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New
Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For
more information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472

x | Preface

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/algorithms_nutshell_2e.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our
website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

We would like to thank the book reviewers for their attention to detail and sugges-
tions, which improved the presentation and removed defects from earlier drafts:
From the first edition: Alan Davidson, Scot Drysdale, Krzysztof Duleba, Gene
" Hughes, Murali Mani, Jeffrey Yasskin, and Daniel Yoo. For the second edition: Alan
Solis, Robert P. J. Day, and Scot Drysdale.

George Heineman would like to thank those who helped instill in him a passion for
algorithms, including Professors Scot Drysdale (Dartmouth College) and Zvi Galil
(Columbia University, now Dean of Computing at Georgia Tech). As always,
George thanks his wife, Jennifer, and his children Nicholas (who has now started
learning how to program) and Alexander (who loves making origami creations
from the printed rough drafts of this edition).

Gary Pollice would like to thank his wife Vikki for 46 great years. He also wants
to thank the WPI computer science department for a great environment and a
great job.

Stanley Selkow would like to thank his wife, Deb. This book was another step on
their long path together.

Preface | xi

Table of Contents

Preface to the Second Edition...... R AP BT vii
1. Thinking IDAKOINS. 50500 sxsssssnTivs sesnemps e susmmeenvesse 1
Understand the Problem 1
Naive Solution 3
Intelligent Approaches 3
Summary 8
References 8
2. The Mathematics of AMGORRINMS. . ..o 5w 55s sn s v si6s yas s s e vorsamons 9
Size of a Problem Instance 9
Rate of Growth of Functions 10
Analysis in the Best, Average, and Worst Cases 14
Performance Families 18
Benchmark Operations 31
References 33
3. Algorithm Building Blocks.............covvvvniinnnn e W AR 35
Algorithm Template Format 35
Pseudocode Template Format 36
Empirical Evaluation Format 37
Floating-Point Computation 38
Example Algorithm 42
Common Approaches 46
References 52
4, Sorting Algorithms..........oocvvinvenienneninnes RS AR 53
Transposition Sorting b7

Selection Sort

Heap Sort

Partition-Based Sorting
Sorting without Comparisons
Bucket Sort

Sorting with Extra Storage
String Benchmark Results
Analysis Techniques
References

ORI .5 0 scvicincs 467 5w B AR R RS s

Sequential Search
Binary Search
Hash-Based Search
Bloom Filter
Binary Search Tree
References

Graph Algorithms.ooovviiiiiiiiiniinnnnnn,

Graphs

Depth-First Search

Breadth-First Search

Single-Source Shortest Path

Dijkstra’s Algorithm for Dense Graphs
Comparing Single-Source Shortest-Path Options
All-Pairs Shortest Path

Minimum Spanning Tree Algorithms

Final Thoughts on Graphs

References

PR PO AL oo cosninnimnsninusasms nusnass

Game Trees
Path-Finding Concepts
Minimax

NegMax

AlphaBeta

Search Trees
Depth-First Search
Breadth-First Search
A*Search

Comparing Search-Tree Algorithms
References

61
62
67
74
74
81
85
87
89

Nn
92
95
99
114
119
131

133
134
137
143
147

152 -

157
159
163
167
168

169
169
173
174
180
183
189
192
198
201
211
214

iv

| Table of Contents

10.

1.

12.

Network Flow Algorithms.........................

Network Flow

Maximum Flow

Bipartite Matching

Reflections on Augmenting Paths
Minimum Cost Flow
Transshipment

Transportation

Assignment

Linear Programming

References

Computational Geometry.......covviiiiiiiiiiiiiiernnieeennnnnnn.

Classifying Problems

Convex Hull

Convex Hull Scan

Computing Line-Segment Intersections
LineSweep

Voronoi Diagram

References

Spatial Tree Structures.oovvvvveininrennnennns 5 e R

Nearest Neighbor Queries
Range Queries
Intersection Queries
Spatial Tree Structures
Nearest Neighbor Queries
Range Query

Quadtrees

R-Trees

References

Emerging Algorithm Categories.....................

Variations on a Theme
Approximation Algorithms
Parallel Algorithms
Probabilistic Algorithms
References

Epilogue: Principles of Algorithms. A S

Know Your Data

Decompose a Problem into Smaller Problems

218
220
231
234
238
239
240
242
242
243

245
246
249
250
258
259
268
281

283
284
285
285
285
288
298
305
311
323

325
325
326
332
336
344

345
345
346

Table of Contents

| v

Choose the Right Data Structure

347

Make the Space versus Time Trade-Off 349

Construct a Search ; 350

Reduce Your Problem to Another Problem 350

Writing Algorithms Is Hard—Testing Algorithms Is Harder 351

Accept Approximate Solutions When Possible 352

Add Parallelism to Increase Performance 353
B BOTOIBIING, » s 55w ocisasoasntins Seam s R ne s 5 SF ok A 355
IO .+ oo s i smumm s pusmme v b s RN oA R S S SRS AR S 367
vi | Tableof Contents

Thinking in Algorithms

Algorithms matter! Knowing which algorithm to apply under which set of circum-
stances can make a big difference in the software you produce. Let this book be your
guide to learning about a number of important algorithm domains, such as sorting
_ and searching. We will introduce a number of general approaches used by algo-
rithms to solve problems, such as the Divide and Conquer or Greedy strategy. You
will be able to apply this knowledge to improve the efficiency of your own software.

Data structures have been tightly tied to algorithms since the dawn of computing. In
this book, you will learn the fundamental data structures used to properly represent
information for efficient processing.

What do you need to do when choosing an algorithm? We'll explore that in the fol-
lowing sections.

Understand the Problem

The first step in designing an algorithm is to understand the problem you want to
solve. Let’s start with a sample problem from the field of computational geometry.
Given a set of points, P, in a two-dimensional plane, such as shown in Figure 1-1,
picture a rubberband that has been stretched around the points and released. The
resulting shape is known as the convex hull (i.e., the smallest convex shape that fully
encloses all points in P). Your task is to write an algorithm to compute the convex
hull from a set of two-dimensional points.

Given a convex hull for P, any line segment drawn between any two points in P lies
totally within the hull. Let’s assume we order the points in the hull clockwise. Thus,
the hull is formed by a clockwise ordering of h points Ly, L,, ... ,L;_; as shown in
Figure 1-2. Each sequence of three hull points L;, L;,;, L;,, creates a right turn.

P, ®
P, °
P, @ he .
P, ®
h @
P, @
p2 . pm .
P, ®) Py
t @ ®
pﬂ
®
Py
p'l‘ . .

Figure 1-1. Sample set of 15 points in plane

Figure 1-2. Computed convex hull for points

With just this information, you can probably draw the convex hull for any set of
points, but could you come up with an algorithm (i.e., a step-by-step sequence of
instructions that will efficiently compute the convex hull for any set of points)?

What we find interesting about the convex hull problem is that it doesn’t seem to be
easily classified into existing algorithmic domains. There doesn’t seem to be any lin-
ear sorting of the points from left to right, although the points are ordered in clock-
wise fashion around the hull. Similarly, there is no obvious search being performed,
although you can identify a line segment on the hull because the remaining n - 2
points are “to the right” of that line segment in the plane.

2 | Chapter 1: Thinking in Algorithms

Naive Solution

Clearly a convex hull exists for any collection of three or more points. But how do
you construct one? Consider the following idea. Select any three points from the
original collection and form a triangle. If any of the remaining n - 3 points are con-
tained within this triangle, then they cannot be part of the convex hull. We'll
describe the general process using pseudocode, and you will find similar descrip-
tions for each of the algorithms in the book.

Slow Hull Summary

Best, Average, Worst: 0(n4)

slowHull (P)
foreach p@ in P do
foreach p1 in {P-p@} do
foreach p2 in {P-p0-p1} do (1)
foreach p3 in {P-p@-pl-p2} do
if p3 is contained within Triangle(p®,pl,p2) then
mark p3 as internal

create array A with all non-internal points in P
determine leftmost point, left, in A

sort A by angle formed with vertical line through left (3]
return A

© Points p0, p1, p2 form a triangle.
@® Points not marked as internal are on convex hull.

© These angles (in degrees) range from -90 to 90.

In the next chapter, we will explain the mathematical analysis that shows why this
approach is considered to be inefficient. This pseudocode summary explains the
steps that produce a convex hull for each input set; in particular, it created the con-
vex hull in Figure 1-2. Is this the best we can do?

Intelligent Approaches

The numerous algorithms in this book are the results of striving for more efficient
solutions to existing code. We identify common themes in this book to help you
solve your problems. There are many different ways to compute a convex hull. In
sketching these approaches, we give you a sample of the material in the chapters
that follow.

Naive Solution | 3

=
Q
)
=,
5
=
wn

ul BupjuIyL

Greedy

Here’s a way to construct the convex hull one point at a time:

1. Remove from P its lowest point, low, which must be part of the hull.

2. Sort the remaining n - 1 points in descending order by the angle formed in rela-
tion to a vertical line through low. These angles range from 90 degrees for
points to the left of the line down to —-90 degrees for points to the right. p,, , is
the rightmost point and p, is the leftmost point. Figure 1-3 shows the vertical
line and the angles to it from each point as light lines.

3. Start with a partial convex hull formed from three points in this order {p,_,,
low, po}. Try to extend the hull by considering, in order, each of the points p, to
P2 If the last three points of the partial hull ever turn left, the hull contains an
incorrect point that must be removed.

4. Once all points are considered, the partial hull completes. See Figure 1-3.

low

Figure 1-3. Hull formed using a Greedy approach

Divide and Conquer

We can divide the problem in half if we first sort all points, P, left to right by x coor-
dinate (breaking ties by considering their y coordinate). From this sorted collection,
we first compute the upper partial convex hull by considering points in order left to
right from p, to p,,_; in the clockwise direction. Then the lower partial convex hull is
constructed by processing the same points in order right to left from p,_, to p, again
in the clockwise direction. Convex Hull Scan (described in Chapter 9) computes

4 | Chapter 1: Thinking in Algorithms

these partial hulls (shown in Figure 1-4) and merges them together to produce the
final convex hull.

| L

L L »
[e =S .
P ~® ®
La”” . . \ . *
| 1 , “ ®
I ! \
| ® ! *
' /| ® Upperpartiathull ® |\ ® lowerpartialhull @
1] \
Le ™ a : Lo ™ ®
| l's' .\ L‘
» \ L et ‘e
® L \\ _____ o
- ¢ @----

Figure 1-4. Hull formed by merging upper and lower partial hulls

Parallel

If you have a number of processors, partition the initial points by x coordinate and
have each processor compute the convex hull for its subset of points. Once these are
completed, the final hull is stitched together by the repeated merging of neighboring
. partial solutions. A parallel approach divides subproblems among a number of pro-
cessors to speed up the overall solution.

Figure 1-5 shows this approach on three processors. Two neighboring hulls are
stitched together by adding two tangent lines—one on the top and one on the bot-
tom—and then eliminating the line segments contained within the quadrilateral
formed by these two lines.

Approximation

Even with these improvements, there is still fixed lower bound performance for
computing the convex hull that cannot be beaten. However, instead of computing
the exact answer, perhaps you would be satisfied with an approximate answer that
can be computed quickly and whose error can be accurately determined.

The Bentley-Faust-Preparata algorithm constructs an approximate convex hull by
partitioning the points into vertical strips (Bentley et al., 1982). Within each strip,
the maximum and minimum points (based on y coordinate) are identified (they are
drawn in Figure 1-6 with squares around the points). Together with the leftmost
point and the rightmost point in P, these extreme points are stitched together to
form the approximate convex hull. In doing so, it may happen that a point falls out-
side the actual convex hull, as shown for point p; in Figure 1-6.

Intelligent Approaches | 5

=
Q
o
=
=
=
3
n

uj BupjuiyL

