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Preface

The notion of regular variation was discovered by Jovan Karamata in
his famous paper of 1930 ”Sur une mode des croissance reguliére des fonc-
tions”. Karamata’s aim was Tauberian theory, one of the highlights of the
epoch marked by the work of eminent analysts, predominantly that of G.H.
Hardy, J.L. Littlewood and also of E. Landau, culminating in N. Wiener’s
general Tauberian theorem in 1932. However, in addition to proving Taube-
rian theorems first for Laplace-Stieltjes and later for the more general inte-
gral transforms of convolution type, regular variation was soon applied in
Abelian theorems, giving in fact asymptotic behavior of integrals and series,
the Fourier ones in particular. Further applications in analysis include Mer-
cerian theorems, analytic number theory, complex analysis-entire functions
in particular. With W. Feller’s well known treatise of 1968, [14], regular
variation was recognized as a major tool in the probability theory and its
applications. A new impetus to the subject was provided by the L. de Haan
work in 1970, [23], where he introduced a substantial generalization of regu-
lar variation, aiming again primarily at the probability theory. This can be
found in the monograph of J.L. Geluk and L. de Haan of 1987, [18].

The first paper connecting regular variation and the differential equa-
tion is the one of V.G. Avakumovié of 1947, ”Sur ’équation différentielle de
Thomas-Fermi”. His paper did not attract much attention - regularly varying
functions were totally distant from the theory of differential equation at that
time, until the investigations of M. Tomié and the author started in 1976,
[37]. The first study of the linear equations is that of E. Omey in 1981, [55].

The most complete presentation of Karamata theory and its generaliza-
tions as well as the majority of the applications are contained in the book
of 1987 by N.H. Bingham, C.M. Goldie and J.L. Teugels [9]. Rudimentary
results on differential equations form its Appendix 2.

The first monograph on the subject is the one of E. Seneta of 1976, [60].

The core of this treatise is based on joint results of Miodrag Tomié and
the author. Significant contribution to the main theme of the book are
the included results of J.L. Geluk and E. Omey and the joint ones of H.C.
Howard and the author. Although Miodrag Tomié is formally not an author
of this book, the whole text is permeated with his influence and ideas. This
holds both for conjectures leading to a number of theorems and for many
special techniques and devices needed for the proofs where general methods



Vil

fail. A long lasting cooperation with him has been for the author the most
enlightening and inspiring experience in mathematics.

The author is most grateful to Mrs. Aleksandra Djan for her patient and
skilful typing and preparing the manuscript.

Novi Sad Vojislav Marié
December 1999
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Introduction

0.1. This book deals with some properties of solutions of the second
order differential equation of the form

(0.1) y"' = f(z)é(y)

both for the linear and for some nonlinear cases. The former one is extended
to the more general equation y”+ g(z)y’+h(z)y = 0. The latter one contains
some classes of equations modelling certain physical phenomena, and the
natural generalizations.

Another equation studied here is

ylll _ yyll + A(l + yl2) — 0
arising in boundary layer theory.

In particular we are interested in the precise asymptotic behaviour of
solutions y for the large value of the variable. By that we mean as usual: To
find an ultimately continuous, positive function g such that y(z)/ g(z) = 1,
as T — 0o.

Concerning the linear equation the problem of asymptotics is very old
and goes back to Liouville, [36], and Green, [20]. (See [27] for an histori-
cal survey). There is a voluminous literature on the subject for the more
general case of linear systems, [13], [11]. It is also of contempory interest in
theoretical physics since the considered linear equation represents the one-
dimensional Schrédinger equation [61].

The novelty of the approach in this treatise consists of introducing into
the study of properties - asymptotics in particular, of solutions of differential
equations the notion of regular variation of Karamata as defined in Defini-
tions 0.1 and 0.2 below and also of its extensions, in particular that of de
Haan as given in Definitions 0.8 and 0.9.

For the linear equation (0.1) i.e. when ¢(y) = y, with ¢ of arbitrary
sign, the necessary and sufficient conditions for the solutions to belong to
Karamata class of functions (see paragraph 0.2), are formulated. (Ch. 1).
This gives a new insight into the set of solutions since in the extensively
developed theory (see e.g. [60], [9], [18]), numerous interesting and specific
properties of functions of Karamata class are proved which are also suitable
for various applications.
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Conversely, this offers a differential characterization of a subset of Kara-
mata functions.

It is shown in this book that several of the mentioned properties are in
particular useful in obtaining a method leading to the asymptotic behaviour
of solutions for both linear (Ch. 2.) and for the aforesaid classes of non-
linear equations (Ch. 3., Ch. 4.). The asymptotic formulas for solutions
obtained in this way contain as a factor a slowly varying function not neces-
sarily tending to a constant and therefore differ from all previously known in
the asymptotics of solutions of differential equations and also generalize the
relevant earlier ones.

0.2. In order to be able to formulate our results we present here the
definition of regularly (in particular, slowly) varying functions as introduced
by J. Karamata, [33] and the two fundamental properties of these. In addition
the complementary definition of rapidly varying functions, [5], the one of
regularly bounded functions, [3]and of de Haan class [23] are given, to serve
the same purpose as the previous ones.

Additional properties of Karamata and of related functions needed in
performing the proofs, are presented in the Appendix.

Definition 0.1. A positive measurable function p defined on some neigh-
bourhood [a,00) of infinity is called regularly varying at infinity of indez o if,
for each A > 0 and some a € R,

02) lim p(A2)/p(z) = X°.

The real number « is called the index of regular variation.

Definition 0.2. A positive measurable function L defined on some neigh-
bourhood [a,00) of infinity is called slowly varying at infinity, if for each
A>0,

(0.3) Jim L(Az)/L(z) = 1.

It follows from the previous two definitions that if p is regularly varying
of index a it can be represented in the form

p(z) = z°L(z).
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It is also clear that a slowly varying function L is regularly varying of
index o = 0. Consequently, the set of slowly varying functions forms a
subset of the set of regularly varying ones.

This is a somewhat misleading statement, since the class of slowly vary-
ing functions is the one which presents itself, due to wealth of interesting
properties, as a major novelty in the classical analysis and its applications.

In the sequel the term ”regularly varying function” sometimes will in-
clude the slowly regular ones and sometimes not. The context, however, will
prevent any ambiguity.

We present the two fundamental properties which are the main source of
most additional ones.

Theorem 0.1., [33] (Uniform convergence theorem). If p is regularly
varying of index o € R at infinity then the relation (0.2) (and so (0.3)) holds
uniformly for A € [a,b] with 0 < a < b < oo.

Theorem 0.2., [33] (Representation theorem). The function L is slowly
varying at infinity if and only if it may be written in the form

(0.4) L(z) = ¢(z) exp {/:(e(t)/t)dt} , T2>a,

for some a > 0, where € and ¢ are measurable and for ¢ — oo, e(z) — 0 and
c(z) — ¢, with c € (0,00).

(Notice that L, ¢, € may be altered at will on finite intervals so that
the value of @ is unimportant and if @ = 0 one can take ¢(z) = 0 in a
neighbourhood of zero to avoid divergence of the integral at the origin.)

We emphasize at this point, that from some point of view, e.g. the mea-
suring of scales of growth like in studying asymptotic behaviour of relevant
functions, slowly varying functions are of interest only to within asymptotic
equivalence. For that purpose it suffices to take in (0.4) ¢(z) to be equal to
a positive constant c.

The following definition of E.E. Kohlbecker is pertinent to the case.

Definition 0.3., {35]. The slowly varying function

(0.5) L(z) = cexp { [ /t)dt}

where ¢ is a positive constant is called normalized.
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That class will play an important role in the sequel.
Some examples of slowly varying functions are provided by:

L(z) = [] (log, z)*
v=1
where £, are real numbers and log, denotes the v-th iteration of the loga-
rithm,
L) = exp{ [T 00g, o)
v=1
where 0 < 1, < 1,
1 = dt
Liz)=- | —.
(=) z Ja Int
The above given examples of slowly varying functions might associate
these with the monotonicity for large values of z. This is far from being true
as indicates the following example

(0.6) L(z) =exp {(lnz)1/3 cos(ln:c)l/s} ,
where  liminf L(z) =0, limsup L(z) = oo,
Z—+oo T—00

so that L(z) oscillates infinitely.
The natural extension of the class of functions introduced by Definitions
0.1 and 0.2 was made only in 1957 by A. Békéssy [5] as follows:

Definition 0.4. A positive measurable function g defined on some neigh-
bourhood [a, 00) of infinity is called rapidly varying at infinity of index co if
for z — oo,

oo , forA>1

(0.7)a) 9(Az)/g(z) — { 0 , for0<Ai<1

and is called rapidly varying at infinity of index —oo if for zx — oo
0 , forA>1

(0.7)b) g(Az)/g9(z) — { oo , for0<A<l.

Together they are called rapidly varying at infinity.

For instance, g(z) = €° is rapidly varying of index oo and g(z) = e is

such of index —oo.
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It is sometimes necessary to transfer attention from infinity to the origin
as it is the case throughout the Chapter 4 of this book. We present, therefore

Definition 0.5. A positive measurable function p defined on some neigh-
bourhood (0,a), a > 0 is called regularly varying at zero of indezx a, if for
each A > 0 and some a € R

(0.8) lim p(Az)/p(z) = A%

Notice that this is equivalent to saying that f(1/z) is regularly varying
at oo of index —a. Consequently, one can transfer properties of relevant
functions from the case £ — oo to the case z — 0.

We shall call the functions introduced by Definition 1-4, Karamata class
of functions.

Some simple oscillating functions (e.g. g(z) = 2+ sinz) are not regularly
varying. A natural and useful generalization was given in 1935 by V. G.
Avakumovié {3] (cf. J. Karamata [34]). An alternative approach is given by
N. K. Bari and S. B. Steckin [6].

Definition 0.6. A positive measurable function g defined on some neigh-
bourhood [a,00) of infinity is called regularly bounded (or R-O varying) at
infinity if for each 1 < X < Ag.

m < g(Az)/g(z) < M

where, Ao, m, M are any constants satisfying 1 < Mg < 00, 0 < m < 1,
1< M < oo,

One can show that all regularly varying functions belong to this class.
This is also true for all positive measurable functions which are on [a, c0)
bounded away from both 0 and oco.

In the context of regularly bounded functions the following notion will be
needed:

Definition 0.7. A function g(x) is said to be almost increasing if there
ezists a constant A > 1 such that z, < z; implies g(z3) < Ag(z1); almost
decreasing functions are defined likewise.

0.3. In Definition 0.1 the asymptotic relation of the form ¢(zt)/d(t) —
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¥(z), as t = oo is considered. Writting f = In¢, k = Iny this becomes
f(zt) — f(t) = k(z), as t— oo.
In [23] the Haan studied more general relation

fltz) — (1)
a(t)

The function a is called the auxiliary function.

By that a new class of functions - de Haan class is introduced. An exten-
sive theory of such functions rich in ramifications is developed, parallel to the
one of Karamata class [18], [9, 3]. De Haan class present itself as very fruitful
in various applications. Here we present some of these related to differential
equations.

If in particular one put in (0.9) g(z) = Inz a subclass of slowly varying
functions can be obtained by

(0.9) —g(z) as t— oo, forall z>0.

Definition 0.8., [18, Def. 1.11]. A measurable function f defined on
[@g, 00) is said to belong to the class II if there exists a positive function a
defined on (0,00) such that for z > 0

o 1@ = 1(0)

t—00 a(t) = ln:v,

one writes f € [] or f € [1(a).
Furthermore, using Definition 0.8, one can introduce an useful subclass
of rapidly varying functions as framed in

Definition 0.9., (18, Def. 1.24] A positive non-decreasing function f
defined on R, is said to belong to the class T if there exist a positive function
b defined on R such that for all z € R and fort = oo

flt+2b) _ .

lim——:c

t—o0 f(t) ’
the function b is called the auziliary function for f.
One writes f € T or f € I'(b).
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We shall also make use of the following

Definition 0.10., [18, Def. 1.33] 4 positive measurable function b defined
on R is said to be Beurling slowly varying if for all z € R and

b(t+ab(t)
(Y I

one writes b€ BSV.

The above relation holds locally uniformly in z if b is continuous, [18, Th.
1.34].

0.4. One defines a logarithmico-ezponential function as a real-valued
function defined on some half-axis (a,00) by a finite combination of the
symbols +, —, X, i, AR In, exp, acting on the real variable z and on real
constant, [25, 3.2].

More generally, one defines Hardy field as a set of germs of real-valued
functions defined on some half-axis (a, c0) that is closed under differentiation
and that form a field under the usual addition and multiplication of germs,
[57, p.297].

The logarithmico-exponential class of functions or more generally - Hardy
fields, have been considered as the natural domain of asymptotic analysis
where all rules hold without qualifying conditions.

In G. H. Hardy’s own words [25, 4.5]: "No function has yet presented
itself in analysis the laws of whose increase, in so far as they can be stated
at all, cannot be stated, so to say, in logarithmico-exponential terms”.

This statement of Hardy was basically influenced by the fact that the
arithmetic functions occuring in the number theory having often very com-
plicate structure and for which he expected ”would give rise to genuinely new
modes of increase”, so far obey the log-exp laws of increase.

That indicates a possible significance of the results in this treatise as
sketched in paragraph 1. For, any logarithmico-exponential function f (or
any element of Hardy fields) together with the derivatives, is ultimately con-
tinuous and monotonic, of constant sign and Jlim f(z) exists as a finite or
infinite one. On the other hand a slowly varying function may oscillate -
even infinitely as shown by the last preceeding example (0.6). And, as it is
pointed out in paragraph 0.1, the solutions of a second order linear equation
may behave as slowly varying functions. Therefore, the solutions of such a
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simple equation may exibit a ”genuinely new mode of increase”. To support
our point we emphasize here that no hypothesis of the theorems which follow
leading to the above statement concerning solutions, is related to regular
variation (Cf. 1.2).

In addition we recall that the solutions of considered linear equation
y" + flz)y = 0 with f(z) of arbitrary sign can be oscillatory or nonoscil-
latory depending on properties of f. Since regularly (and slowly) varying
functions are, by Definitions 0.1 and 0.2, ultimately positive, the necessary
and sufficient conditions, mentioned in paragraph 0.1 ensuring the solutions
to be regularly (or slowly) varying, are in fact necessary and sufficient for
the nonoscillation of pertinent solutions. Such results are quite scarce in the
existing literature in spite of the abundance of results on oscillation theory.



Part One

Linear Equations
Chapter 1

Existence of regular solutions

1.1. Preliminaries.

We consider second order linear equation

(1.1) y' + f(z)y = 0,
but the results are then easily generalized to more general case
(1.2) Yy’ + g(z)y’ + h(z)y = 0.

For the coefficient f in (1.1) it is assumed to be continuous on a half-
axis [ao, 00) for some aq > 0, and for A(t), g(t) in (1.2) it is required to be
continuous and continously differentiable respectively.

In general f is of arbitrary sign. However some results deal with the
special case f(z) < 0 when all (positive) solutions are convex. This opens
possibilities for some additional results compared to the general case. Also,
more direct methods can be used for the proofs.

Also, all solutions y are studied for z > z¢ > ay.

All results of Part One which follow are essentialy related to one solution
only, since the second linearly independent one, is then treated by the usual
Wronskian technique i.e. by using well known formulae

(13)  w@=uE@ [O6, o we)=une) [ o

depending on the convergence of the integral. For the lower bound in all
forthcoming integrals may be taken any real number a such that a > zo. Of
course, y; is of constant sign on the considered intervals.
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In all proofs of results in secion 1.2 decreasing solutions play a dominant
role. This is why we include here the following

Lemma 1.1. Let for some a > 0, p € C'[a,0), q € C[a, o), p(z) > 0,
q(z) > 0, with q(z) ultimately non-vanishing. Then the equation

(p(2)y'(2))' = q(z)y(2)
has a positive decreasing solution on (zq,00) for some zo > a.

Among the various approaches regarding the proof we present the follow-
ing one of M. Marini and P. Zezza [50].

Proof. First notice that for every nontrivial solution v of the considered
equation there exists a o > a such that v(t) is monotone on (zq,00). This
follows since for the function M(z) = p(z)v(z)v'(z), due to the positivity
of p(z) and q(z) one has for z > z¢, M'(z) = p(z)v?*(z) + q(z)v*(z) > 0.
Which implies that v'(z) can have at most one zero greater then x,.

Further divide the set of all relevant solutions into two classes

A = {y = y(z) a solution: Iz, : y(z0)y'(z0) > 0}
B = {y = y(z) a solution: Vz > z,, y(z)y'(z) < 0}.

Without loss of generality we may consider solutions of class A as positive
nondecreasing or negative nonincreasing and similarly for class B.

Class A is nonempty since it contains the solutions with positive initial
conditions. Moreover one shows by the usual Wronskian technique that if a
nonzero solution of class A is bounded, then all solutions of class A are such,
[50, Lemma 2].

To complete the proof one has to show that there is a solution of class B.

Let v be any solution of the considered equation with positive initial
conditions therefore belonging to class A. Then the function

u(z) = v(z) /z ds

20 p(s)v2(s)
is another linearly independent solution.

Suppose first that v(z), is unbounded (in fact - tending to infinity being
increasing), and consider

lim u(z) = lim /zL = K.

g0 y(z) =00 Jgy p(s)v2(s)



