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Preface

"For he who knows not mathematics cannot know any other sciences;
what is more, he cannot discover his own ignorance or find its proper
remedies. " [Opus Majus] Roger Bacon (1214-1294)

The material presented in these monographs is the outcome of the author’s
long-standing interest in the analytical modelling of problems in mechanics
by appeal to the theory of partial differential equations. The impetus for wri-
ting these volumes was the opportunity to teach the subject matter to both
- undergraduate and graduate students in engineering at several universities.
The approach is distinctly different to that which would adopted should
such a course be given to students in pure mathematics; in this sense, the
teaching of partial differential equations within an engineering curriculum
should be viewed in the broader perspective of "The Modelling of Problems
in Engineering” . An engineering student should be given the opportunity to
appreciate how the various combination of balance laws, conservation equa-
tions, kinematic constraints, constitutive responses, thermodynamic restric-
tions, etc., culminates in the development of a partial differential equation,
or sets of partial differential equations, with potential for applications to en-
gineering problems. This ability to distill all the diverse information about
a physical or mechanical process into partial differential equations is a par-
ticular attraction of the subject area. A second aspect of the teaching of
partial differential equations to engineering students must cover topics that
should enable them to pose an engineering problem as a correct mathema-
tical statement. This process can include the mathematical structuring of
the physical boundary conditions, regularity conditions, initial conditions
and uniqueness theorems to generate a well-posed problem in partial diffe-
rential equations. Thirdly, the presentation should include an introduction
to the solution schemes that will highlight the basic structure of the solu-
tions associated with the different classes of partial differential equations, by
appeal to suitable idealizations of engineering problems. These volumes are
also intended to illustrate the extensive range of applicability of the basic
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linear partial differential equations in a multidisciplinary sense, with spe-
cial emphasis on applications to problems in mechanics encountered in civil
engineering, mechanical engineering, theoretical and applied mechanics, che-
mical engineering, geological engineering, earth sciences, etc., covering topics
such as fluid flow, diffusion and mass transport in porous media, pressure
transients and moisture diffusion in porous geomaterials, heat conduction
in solids, waves in elastic solids, fluids and membranes, elasto-mechanics of
solids and structural elements and mechanics of viscous fluids.

These companion volumes contain a total of nine chapters, which introduce
the basic concepts of partial differential equations with the central theme of
modelling and applications in mechanics. The division of the presentation
into two companion volumes with chapter continuity achieves two purposes.
The material contained in Volume I, chapters 1 to 7, can form the subject
matter of a senior level undergraduate course or a graduate level course
in applications of partial differential equations in mechanics for engineering
students. The material contained in Volume II, chapters 8 and 9, is ideally
suited for a graduate level course devoted to applications of partial diffe-
rential equations in mechanics of solids. The introductory chapter gives a
review of the mathematical preliminaries, including vector calculus, Fourier
series and integral transforms. This chapter is not intended to provide an
exhaustive coverage of these topics and the interested reader can further
review this material by consulting the bibliography cited at the end of these
volumes. The presentation in chapter 1 is kept to a reasonable length by
introducing as brief a derivation of the salient results and procedures as pos-
sible. Chapter 2 introduces partial differential equations and definitions of
order, linearity, homogeneity, and well posedness. Chapter 3 provides a brief
account of first-order partial differential equations with applications that in-
volve characteristic equations. Applications of integral transform techniques
to the solution of elementary problems involving transport in porous media
are also discussed. Chapter 4 deals with the classification of partial diffe-
rential equations of the second-order with procedures for their reduction
to canonical forms. The application of Laplace’s equation to problems of
steady state heat conduction, ideal fluid flow, flow in porous media and ap-
plications to the study of deflections of stretched membranes are detailed in
chapter 5. Chapter 6 examines the diffusion equation in relation to transient
heat conduction, mass transport in porous media and pressure transients in
porous media. Chapter 7 deals with the wave equation and its application
to wave propagation in infinite and finite strings, vibrations of membranes
and elementary one-dimensional vibration problems in solid mechanics. This
chapter also examines the application of the wave equation to the study of
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shallow water waves. Chapter 8 presents a very complete exposition of the
application of the biharmonic equation to problems in mechanics. A perusal
of many existing texts on partial differential equations reveals the conspi-
cuous absence of any detailed treatment of the biharmonic equation. Yet,
the biharmonic equation is one of the most important partial differential
equations in applied mechanics, with applications in the theory of elasticity,
mechanics of elastic plates and the theory of slow flows of viscous fluids, all
subject areas of fundamental importance to the engineering sciences. Chap-
ter 9 deals with Poisson’s equation. Many expositions of Poisson’s equation
present themselves as appendages to Laplace’s equation. The objective of
this chapter is to demonstrate that Poisson’s equation has significance in
its own right and has extensive applications to engineering problems dealing
with steady state heat conduction in heat generating media, groundwater
flow with recharge or depletion, mechanics of stretched, loaded membranes
and in the study of the theory of torsion of prismatic elastic bodies.

Each chapter contains a detailed discussion of the application of the rele-
vant partial differential equation, its derivation in a generalized fashion and
the formulation of consistent boundary and/or initial conditions required
for their well posedness. The proof of the relevant uniqueness theorems,
maximum principles and other topics of general interest to identifying the
qualitative aspects of the specific partial differential equations are also dis-
cussed. Worked examples within the text and problem sets at the end of each
chapter highlight engineering applications of the theories and relevant analy-
tical developments. The volumes are reasonably self-contained, in the sense
that all necessary material, including developments of the governing partial
differential equations, proofs of general theorems and applications, are pre-
sented in their entirety without recourse to references within the text. There
is, of course, a wealth of information available in other texts and treatises
devoted to the subject of partial differential equations and the reader, and
students in particular, should at least aware of these developments. To this
end, these volumes contain an extensive bibliography divided into topics
covering general engineering mathematics, ordinary differential equations,
partial differential equations, Fourier series, integral transforms and special
functions, boundary value problems and mathematical methods. The biblio-
graphy also contains titles of interest to the separate chapters, including
first-order partial differential equations, Laplace’s equation, the diffusion
equation, the wave equation, the biharmonic equation and Poisson’s equa-
tion. Although not required for the subject matter covered in these volumes,
the bibliography also contains titles related to non-linear partial differential
equations, numerical methods for the solution of partial differential equa-
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tions, applications of computer based symbolic manipulation methods to
mathematics and references to historical material in both mechanics and
mathematics. Symbolic computer methods are gaining popularity in many
engineering curricula; they should be considered as a useful complement
to carrying out mathematical operations in a time effective manner, parti-
cularly as computer laboratory exercises of examples given in these volumes.

These monographs, by design, emphasize analytical procedures for the solu-
tion of the various partial differential equations. This should not be construed
as an opportunity to de-emphasize numerical and computational techniques.
On the contrary, any realistic engineering application of even the simplest of
theories, such as those described by the linear partial differential equations
treated in these monographs will invariably require access to sophistica-
ted numerical schemes. These schemes can include finite difference, finite
element and boundary integral equation techniques that are gaining consi-
derable popularity in engineering curricula, both at the undergraduate and
graduate levels. The teaching of these numerical techniques can only be-
nefit by instilling in undergraduate engineering students the confidence in
both the mathematical aspects of partial differential equations and their ap-
plications potential. Indeed, in advanced finite element formulations based
on the Galerkin technique, the governing partial differential equations are
a prerequisite; similarly, knowledge of the Green’s function applicable to a
particular partial differential equation is a requirement for the application
of boundary integral equation techniques. The subject of partial differential
equations has a long and rich tradition in mathematics and mechanics, and,
as the bibliography demonstrates, has at its disposal an extensive collection
of texts and treatises devoted to the subject. The bibliography is certainly
not meant to be all encompassing and up to date. The texts cited are con-
sidered sufficient as supplementary reading material. The present volumes,
however, differ from many traditional presentations in that the subject mat-
ter is introduced within the context of mathematical rigour, modelling in
mechanics and the applications of elementary solutions to problems in engi-
neering mechanics.

The need for engineers to understand fundamental concepts associated with
partial differential equations and techniques available for their solution
becomes apparent when mathematical modelling and analysis of engineering
problems are set in their modern context. Engineers are constantly exposed
to new engineering software tools, usually involving numerical methods that
enable them to carry out engineering computations for practical problems
with speed and accuracy. In a majority of these cases, the numerical schemes
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are designed to solve partial differential equations with complicated coupled
phenomena, which usually have a non-linear character. The validity and
success of the numerical procedures in such software tools cannot be confir-
med in a universal sense. The opportunity, however, exists for engineers to
conduct calibrations of such numerical schemes by recourse to solutions de-
veloped for classes of linearized problems, albeit simplified. The modelling of
an engineering problem as a mathematical statement can be regarded as the
modern equivalent of a design exercise. These companion volumes highlight
the point that even elementary partial differential equations are a powerful
tool for posing and solving practical problems in engineering. The mathe-
matical rigour of the presentations is balanced by an extensive variety of
applications in mechanics. The practical nature of the problems examined
emphasizes mathematical modelling as an important aspect of the training
of engineering students. In this sense, the subject of partial differential equa-
tions has much to offer to enhance the quality of the broader mathematical
education of students in engineering and to effectively integrate mathematics
into the mainstream of modelling of engineering problems.
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Chapter 8

The biharmonic equation

An important common theme in the developments presented in connection
with Laplace’s equation, the diffusion equation and the wave equation is
that they are all of the second-order and represent the fundamental equations
which govern elliptic, parabolic and hyperbolic partial differential equations,
respectively. A further general observation in previous expositions is that as
the phenomena that are being modelled becomes either more complex or
encompasses more complicated fundamental processes, the partial differen-
tial equations which describe such phenomena are expected to acquire a
higher order. This was evident in the description of advection-diffusion phe-
nomena governing the transport of chemicals in porous media. In the pre-
sence of only advective phenomena the transport process can be described by
a first-order partial differential equation; when diffusive processes are taken
into consideration, the transport process can be described by a second-order,
partial differential equation. The biharmonic equation is one such partial
differential equation which arises as a result of modelling more complex
phenomena encountered in problems in science and engineering. The term
biharmonic is indicative of the fact that the function describing the pro-
cesses satisfies Laplace’s equation twice explicitly. The exact first usage of
the biharmonic equation is not entirely clear since every harmonic function
which satisfies Laplace’s equation is also a biharmonic function. Many of
the applications of the biharmonic equation stem from the consideration of
more complex mechanical and physical processes involving solids and fluids.
One of the earliest applications of the biharmonic equation deals with the
classical theory of flexure of elastic plates developed, among others, by J.
Bernoulli (1667-1748), Euler (1707-1831), Lagrange (1736-1813), Germain
(1776-1831), Poisson (1781-1840), Navier (1785-1836), Cauchy (1789-1857)
and Lamé (1795-1870). Developments to the mathematical modelling of the
theory of plates continued with contributions by Kirchhoff (1824-1887), Levy



