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Preface

Audio effects are used in broadcasting, television, film, games, and music
production. Where once they were used primarily to enhance a recording
and correct artifacts in the production process, now they are used creatively
and pervasively.

The aim of this book is to describe the theory behind the effects, explain
how they can be implemented, and illustrate many ways in which they can
be used. The concepts covered in this book have relevance to sound engi-
neering, digital signal processing, acoustics, audio signal processing, music
informatics, and related topics.

Both authors have taught courses on this subject. We are aware of excellent
texts on the use of audio effects, especially for mixing and music production.
We also know excellent reference material for audio signal processing and
for audio effect research. But it was still challenging to find the right material
that teaches the reader, from the ground up, how and why to create audio
effects, and how they are used.

That is the purpose of this book. It provides students and researchers
with knowledge of how to use the tools and the basics of how they work, as
well as how to create them. It is primarily educational, and geared toward
undergraduate and master’s level students, though it can also serve as a
reference for practitioners and researchers. It explains how sounds can be
processed and modified by mathematical or computer algorithms. It teaches
the theory and principles behind the full range of audio effects and pro-
vides the reader with an understanding of how to analyze, implement, and
use them.

We chose not to shy away from giving the math and science behind the
implementations and applications. Thus, it is one of the few resources for use
in the classroom with a mathematical and technical approach to audio effects.
It provides a detailed overview of audio effects and example questions to aid
in learning and understanding,. It has a special focus on programming and
implementation with industry standards and provides source code for gen-
erating plug-in versions of many of the effects.

Chapter 1 begins by covering some fundamental concepts used often in
later chapters. It also introduces the notation that we use throughout. Here,
we describe some essential concepts from digital signal processing, thus
allowing the subject matter to be mostly self-contained, without the reader
needing to consult other texts.

In Chapter 2, we introduce delay lines and related effects such as delay,
vibrato, chorus, and flanging. These are some of the most basic effects, and
the concept of delay lines is useful for understanding implementations of the
effects introduced in later sections.

ix
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Chapter 3 then covers filter fundamentals. We chose a quite general
approach here and introduce techniques that allow the reader to construct a
wide variety of high-order filters. Attention is also paid to some additional
filters often used in other effects, such as the allpass filter and the exponen-
tial moving average.

In Chapter 4, we explore filters in more detail, covering effects that have fil-
ters as their essential components. These include the graphic and parametric
equalizer, wah-wah, and phaser.

We then move on to nonlinear effects. Chapter 5 discusses modulation,
focusing primarily on tremolo and ring modulation. Chapter 6 goes into
detail on dynamics processing, especially the dynamic range compressor
and the noise gate. Here, much emphasis is given to correct implementation
and perceptual qualities of these effects. Chapter 7 then covers distortion
effects. These are concerned with the sounds that result from highly non-
linear processing, beyond the dynamics processors of the previous chapter.

Having introduced the important signal processing concepts, we can now
move on to the phase vocoder and introduce several effects that do their pro-
cessing in the frequency domain. This is the focus of Chapter 8.

Up to this point, none of the effects has attempted to recreate how a natural
sound might be perceived by a human listener in a real acoustic space. The
next three chapters deal with spatial sound reproduction and spatial sound
phenomena. Chapter 9 covers some of the main spatialization techniques,
starting with panning and precedence, as can be used in stereo position-
ing, and then moves on to techniques requiring more and more channels,
vector-based amplitude panning, ambisonics, and wave field synthesis. The
final technique describes binaural sound reproduction using head-related
transfer functions (HRTFs) for listening with headphones.

Chapter 10 covers the Doppler effect, which is a physical phenomenon.
This short chapter gives both a general derivation and details of implemen-
tation as an audio effect based on delay lines. In Chapter 11, we move on
to reverberation, describing both algorithmic and convolutional approaches.
Though grouped together with the other chapters concerned with spatial
sound, the reverberation approaches described here do not necessarily
require the processing of two or more channels of audio.

Chapter 12 is about audio production. This is, of course, a very broad
area, so we focus on the architecture of mixing consoles and digital audio
workstations, and how the effects we have described may be used in these
devices. We then discuss how to order and combine the audio effects in order
to accomplish various production challenges.

Finally, Chapter 13 is about how to build the audio effects as software plug-
ins. We focus on the C++ Virtual Studio Technology (VST) format, which
is probably the most popular standard and available for most platforms
and hosts. This chapter (and to some extent, Chapter 12) may be read at any
point, or independently of the others. It makes reference to the effects dis-
cussed previously, but the chapter is focused on practical implementation. It



Preface xi

complements the supplementary material, which includes source code that
may be used to build VST plug-ins for a large number of effects described in
the book.

The text has benefitted greatly from the comments of expert reviewers,
most notably Dr. Pedro Duarte Pestana. We are also deeply indebted to
Brecht De Man, who revised the audio effects source code, as well as contrib-
uted several implementations. This book would also not have been possible
without all of the excellent work that has been done before. We are indebted
to various people whose work is frequently cited throughout the text: Julius
Smith, Roey Izhaki, Udo Zoelzer, Ville Pulkki, and Sophocles Orfanidis, to
name just a few. The errors and omissions are ours, whereas the best expla-
nations are found in the works of the cited authors.
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1

Introduction and Fundamentals

In digital audio signal processing and digital audio effects, we are primarily
concerned with systems that take a discrete, uniformly sampled audio signal,
process it, and produce a discrete, uniformly sampled output audio signal.
Therefore, we start by introducing some fundamental properties of sound
that are used over and over again, then how we represent it as a digital sig-
nal, and then we move on to how we describe the systems that act on and
modify such signals. This is not meant to give a detailed overview of digital
signal processing, which would involve discussion of continuous time sig-
nals, infinite signals, and mathematical relationships. Rather, we intend to
focus on just the type of signals and systems that are encountered in audio
effects, and on the most useful properties and representations. Having said
that, this is also intended to be self-contained. Very little prior knowledge
is assumed, and it should not be necessary to refer to more detailed discus-
sions in other texts in order to understand these concepts.

Understanding Sound and Digital Audio

Fundamentally, all audio is composed of waveforms. Vibrating objects cre-
ate pressure waves in the air; when these waves reach our ears, we perceive
them as sound. With the invention of the telephone in the 19th century, audio
was first encoded as an electric signal, with the changes in electric voltage
representing the changes in pressure over time. Until the late 20th century,
electric recording and transmission was all analog: sound was represented
by a continuous waveform over time.

In this book, we will work almost exclusively with digital audio. Rather
than representing audio as a continuous voltage, as in analog, the waveform
will be composed of discrete samples over time. These samples can be stored,
processed, and ultimately reconstructed as sound we can hear. Digital audio
systems generally begin with an analog-to-digital converter (ADC), which cap-
tures periodic snapshots of the electrical voltage on an audio transmission
line and represents these snapshots as discrete numbers. By capturing the
voltage many thousands of times per second, one can achieve a very close
approximation of the original audio signal. This encoding method is known
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FIGURE 1.1
A continuous time signal (a), and its digital representation, found by sampling the signal uni-
formly in time (b).

as pulse code modulation, and is the encoding format used in the WAV and
AIFF audio formats. Pulse code modulation is also one of the most popular
forms of ADC, and certainly one of the simplest to explain.

Thus, a continuous time audio signal, such as captured from a microphone,
is represented as a digital signal with uniform timing between samples (see
Figure 1.1). But digital audio signals need not be derived from analog, nor
even represent any physical sound. They can be completely synthetic, and
generated using digital signal processing techniques. We will touch on this
later in the text when discussing low-frequency oscillators (Chapter 2), phase
vocoders (Chapter 8), and other concepts. It is important to note that unless
additional information is stored, there is no distinction between those digi-
tal audio signals that were generated from conversion of analog signals and
those that were generated from digital sound synthesis techniques (though,
of course, real-world signals are likely to have more noise and more com-
plex phenomena).

There are three important characteristics of almost any digital audio data:
sample rate, bit depth, and number of channels.

Sample rate is the rate at which the samples are captured or played back. It
is typically measured in Hertz (Hz), or cycles per second. In this case, one
cycle represents one sample. An audio CD has a sample rate of 44,100 Hz,
or 44.1 kHz. Higher sampling rates allow a digital recording to accurately
record higher frequencies of sound, or to provide a safety margin in case
of additional noise or artifacts introduced in the recording, processing, or
playback; 48 kHz is often used in audiovisual production, and sample rates
of 96 or 192 kHz are used in high-resolution audio, such as in DVD-Audio, or
in professional audio production.
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The bit depth specifies how many bits are used to represent each audio
sample. The most common choices in audio are 16 bit and 24 bit. The bit
depth also determines the theoretical dynamic range of the audio signal. In
digital audio, amplitude is often expressed as a unitless number, represent-
ing a ratio between the current intensity and the highest (or lowest) possible
intensity that can be represented. The maximum absolute value for this ratio
is known as the dynamic range. In an ideal ADC, the dynamic range, in deci-
bels (see below), is very roughly 6.02 times the number of bits. Thus, 16-bit
audio could represent signals whose loudness ranges over 96 dB, e.g., from a
quiet whisper to a loud rock concert.

The number of channels actually refers to the fact that audio content will
often be composed of several different channels, each one representing its
own signal. This is most often the case in stereo or surround sound, where
each channel may represent the sound sent to each loudspeaker. Monaural
audio, however, is typically encoded as a single channel. We will return to
these concepts in Chapter 9.

Digital audio may be encoded with or without data compression. When data
compression is used, sophisticated algorithms are used to encode and re-
represent the data such that they take up much less space. Hence, a decoder
must be used to convert the data back into time domain samples before play-
back. The compression can be either lossless (the decoded data are identical
to the original data before compression) or lossy. Modern lossy audio com-
pression techniques use knowledge of psychoacoustics to minimize the per-
ceived degradation of audio that occurs when a substantial amount of the
information contained in the original signal is discarded.

Data compression also introduces one more characteristic of audio data,
the bit rate. This is the number of bits per unit of time. For lossless signals,
this is simply the bit depth times the sample rate times the number of chan-
nels. For instance, CD audio would typically have a bit rate of 1,411.2 kbps
(kilobits per second):

bits 4410052 ™PS 9 (4 channels) = 141120021
sample second secon

16

(1.1)

For audio signals that have undergone lossy compression, the bit rate is
usually greatly reduced. Most compression schemes, including mp3 and aac,
transmit audio with a bit rate between 30 and 500 kbps.

It should be noted that there is a lot of fine detail regarding quantization,
sampling, dynamic range, and lossy compression of audio data that has been
omitted here. For the purpose of this text, it is sufficient to know the format
and general meaning of these concepts, but the reader is also encouraged to
refer to signal processing texts for more detailed discussion [1-5].
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WHY 44.1 KHZ?

Perhaps the most popular sample rate used in digital audio, especially
for music content, is 44.1 kHz, or 44,100 samples per second. The short
answer as to why it is so popular is simple; it was the sample rate cho-
sen for the Compact Disc and, thus, is the sample rate of much audio
taken from CDs, and the default sample rate of much audio work-
station software.

As to why it was chosen as the sample rate for the Compact Disc, the
answer is a bit more interesting. In the 1970s, when digital recording
was still in its infancy, many different sample rates were used, includ-
ing 37kHz and 50 kHz in Soundstream’s recordings [6]. In the late 70s,
Philips and Sony collaborated on the Compact Disc, and there was
much debate between the two companies regarding sample rate. In the
end, 44.1 kHz was chosen for a number of reasons.

According to the Nyquist theorem, 44.1 kHz allows reproduction
of all frequency content below 22.05 kHz. This covers all frequencies
heard by a normal person. Though there is still debate about perception
of high frequency content, it is generally agreed that few people can
hear tones above 20 kHz.

This 44.1 kHz also allowed the creators of the CD format to fit at least
80 minutes of music (more than on a vinyl LP record) on a 120 milli-
meter disc, which was considered a strong selling point.

But 44,100 is a rather special number: 44,100 = 22 x 32 x 5% x 72, and
hence, 44.1kHz is actually an easy number to work with for many
calculations.

Working with Decibels

We often deal with quantities that can cover a very wide range of values,
from very large to very small. The decibel scale is a useful way to represent
such quantities. The decibel (dB) is a logarithmic representation of the ratio
between two values. Typically, both values represent power, and hence,
the decibel is unitless. One of these values is usually a reference, so that the
decibel scale can represent absolute levels. The decibel representation of a
level is then 10 times the logarithm to base 10 of the ratio of the two power
quantities. Since power is usually the square of a magnitude, we can write a
value in decibels in terms of the magnitudes or powers as

Xip = 1010g10 (xz/xg) = 2010810 ('x'/IXQD (1.2)

If not specified, x; is usually assumed to be 1. So, for example, 1 million is
60 dB, and 0.001 is =30 dB. Whether a decibel or linear scale is used often
depends just on which one best conveys the relevant information.



