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Preface

The present volume grew out of a set of lithoprinted Lecture Notes
issued in two parts in 1935-38 and long since out of print. The material
of the Notes has been amplified considerably in places, and Chapters II
and IV in parts, Chapters III and IX are new. In the main however
the general program of the Notes has been preserved. In Chapters 11,
IT1, IV, on algebraic varieties the groundfield is generally merely taken
infinite. In Chapters V to TX, which except for Chapter IX, are devoted
to the classical study of algebraic curves, the groundfield is prudently
taken to be algebraically closed and especially of characteristic zero.

It is no secret that the literature on algebraic geometry, now nearly
a century old, is as indigestible as it is vast. This field is now undergoing
an extensive process of recasting and reorganization in which the most
advanced arsenal of modern algebra is playing a fundamental role. At
all events one cannot write on algebraic geometry today outside of the
general framework of algebra. On the other hand many have come to
algebraic geometry and have been attracted to it through analysis, and
it would seem most desirable to preserve this attraction and this contact.
A common ground for algebra and analysis is found in the method of
formal power series which was adopted in the earlier Lecture Notes and
is utilized here again to the full. This method has made it possible for
example to operate with a general groundfield of characteristic zero, and
yet to provide for algebraic curves a treatment surprisingly close to the
classical treatment of Bmile Picard’s Traité d’Analyse, vol. 2, or of
Severi’s Vorlesungen iber algebraische Geometrie. It is not too much to
say that the whole of the classical theory in which the periods play no
role may be dealt with by means of formal power series.

By way of preparation it is assumed that the reader is in possession
of the rudiments of modern algebra (rings, fields, ideals, polynomials
and their factorization) such as are amply developed for our purpose in
any recent text. On the geometric side he should also possess elementary
information on affine and projective spaces. In point of fact, the topics
required along these lines in the book have been summarized in the first
chapter and the first few pages of the second.

We wish especially to give our thanks to Ernst Snapper, who read
most carefully the whole manuscript and made many exceedingly valuable
suggestions for improvement and corrections. We could scarcely exaggerate
our debt to him.

S. LEFSCHETZ
Princeton, New Jersey
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I. Algebraic Foundations

§ 1. PRELIMINARIES

1. The reader is expected to be familiar with the elementary concepts
of modern algebra: groups, rings, ideals, fields, and likewise with the
customary notations of the subject. Multiplication is supposed to be
commutative throughout. To avoid certain awkward points appeal is
made to the well known device of an all embracing field € which includes

all the elements of rings, - - - , under consideration.

(1.1) Notations. Aggregates such as z;, - - -, x, or oy, * - * , o, will
often be written « or «, the range being generally clear from the context.
Accordingly the ring or field extensions K[xz,, « - -, #,] or K(ay, - -+, )

will be written K[x] or K(a), with evident variants of these designations.
Similarly for example for the functional notations: f(z) or ¢(a) for
fl@g, < - -, ), or oy, - * -, o,,). In this connection the “partial’’ extensions
Klzg, « - -, x,], K(og, + - -, o), will also be written K'[z], K*(«), with
meaning generally clear from the context.

The following symbols of point-set theory will also be wutilized
throughout:

C: is contained in; D: contains; (O: intersection, U union;
€ : is an element of.

(1.2) The groundfield. Very soon a certain fundamental field K, the
groundfield will dominate the situation and all rings and fields will then
be extensions of K. When K is of characteristic p the universal field
Q) is also supposed to be of the same characteristic. The groundfield is
always assumed to be infinite and perfect (irreducible polynomials have
no multiple roots in an algebraic extension of K). Often also K is supposed
to be algebraically closed (polynomials with coefficients in X have all
their roots in K). The unique algebraic closure of a field @ is denoted
by ®.

All rings will have a unit element and will always be inlegral domains
(without zero divisors) and with unity element.

(1.3) Noetherian rings. This all important class of rings includes all
those considered in the book. Consider the following two properties
of a ring R:

(a) Bvery sequence of distinct increasing ideals of R: a, Cay-- -, s
necessarily finite.

(b) Hwvery ideal a of R has a finite base.

3



4 ALGEBRAIC FOUNDATIONS [CHar. 1

That is to say there is a finite set {ay, - * - , o} of elements of a, the
base of the ideal, such that every o € a satisfies a relation:

o= Sha, J; € R.

One refers to (a) as the ascending chain property, and to (b) as the Hilbert
base property. And now:

(1.4) The ascending chain property and the Hilbert base property are
equivalent.

A Noetherian ring is a ring which possesses one or the other of the
two properties, and therefore both.

(1.5) T'he polynomial ring K[z] is Noetherian.

(1.6) Every ideal a of a Noetherian ring and hence of K[x] admits a
canonical decomposition a = q; O+ N q, where the q, are primary
tdeals. If p, is the prime ideal associated with q,, then the p, are all distinct
and unique.

For a detailed treatment of the above properties see van der Waerden
[1}, II, Ch. XII.

(1.7) Homogeneous rings, ideals, and fields. By a form f(zg, ®;, < -+, 2,,)
is meant a homogeneous polynomial. Let the quantities x,, - - -, z,, be
such that the only relations between them are of type f (%, - - - , x,) = 0,
where the f, are forms with coefficients in X. Consider now a collection
Ry of forms g € K[z, -+ -, x,] such that if g, ¢ € Ry then: (a)
g9 € Ry; (b) if moreover ¢ and ¢ have the same degree then
g+ ¢ € Ry also. In other words Ry behaves like a ring save that
addition is restricted to forms of the same degree. We refer to Ry as a
homogeneous ring and denote it by K lx,, - - -, ,). Homogeneous ideals
oz of Ry are defined in the usual way save that addition is again restricted
to forms of equal degree. Homogeneous integral domains, Noetherian
rings, prime ideals, primary ideals, are also defined in the usual way and
properties (1.4), {(1.5), (1.6) hold with all ideals homogeneous. The
quotients of forms of Ry of the same degree make up a subfield of
K(zy, - - -, z,), called a homogeneous field and written Ky (zg, « « * , ).

The extension to multiforms f(- - - ; z;; - - ) homogeneous separately
in say n sets of variables - - - ; x,; - - - i3 quite automatic. The rings and
fields are written Kg[- - - ;x5 - - -] and K§(- - - ; ;5 - - +).

2. We shall now recall a certain number of properties of polynomials
in indeterminates z,, referring mainly to their factorization.

(2.1) If fl) = flxy, -+ -, x,) € K2y, - - -, x,] and f £ 0, there exists

an infinite number of sets o = (ay, * * + , &), o; € K, such that f(a) 5= 0.
(2.2) Factorization in the ring Kz, « - -, x,] is unigue to within a
factor in K.
(2.3) Letf, g € Klzy, - -, z,,, y] = Klx; y). If [ is divisible by g in

Ky, + - -, 2, )[y] = K(z)[y], i.e., when both are considered as polynomials
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in y with coefficients in K(x), and if g has no factor free from y (i.e. in K{x])
then f is divisible by g in K(z; y], or f = gh, b € K[z; y].

(2.4) Forms. The following properties may be stated: Let us describe
the sets (ag, * - -, «,) and (B, - -+, B,) of numbers of K as essentially
distinct whenever not all the o, nor all the 5, are zero and there is no
number p € K such that 8, = pa,;, ¢ =0, 1, - -, n. Then:

(2.5) Property (2.1) for n > 1 holds for forms when the infinite sets
(otgs ~ = * 5 &) under consideration are restricted fo sets essentially distinct
m pairs.

(2.6) The factorization properties (2.2) and (2.3) hold when all the
polynomials are forms.

A polynomial or form f(zy, - - -, ,) of degree s is said to be regular
in o; if it contains a term in .
(2.7) Given a polynomial or form f(zg, - - - , z,) € K[z, - -, x,] it is
always possible to find a non-singular linear transformation
v, = Zagy, a; € K, |a;|#0
which changes f into a new polynomial or form g(yg, - - -, vy,) regular in

some or all the variables y;.

§ 2. RESULTANTS AND ELIMINATION

3. We shall recall some elementary properties of resultants and
elimination theory. For further elaboration and proofs the reader is
referred to treatises on algebra, and notably to van der Waerden, [1],
II, Chapter XI, and E. Netto, [1], II.

Consider first two polynomials in one variable x:

f:aomm_*_alxm—l_{_..._l_am’ g:boxn+.+bn

where the a,, b, are indeterminates. The resultant R(f, g) is a doubly
homogeneous form in the a;, b;, whose coefficients are integers and whose
explicit expression is well known but will not be required here. Let R
be the rational field, £ any finite algebraic extension of R and let R%[a; b]
and £3[a; b] be the associated doubly homogeneous rings of the a; b,
Then the only pertinent facts as to the resultant are:

(3.1) B(f, g) is of degree n in the a, and m in the b;. One of its terms is
aghyy.

(3.2) R(f, g) is irreducible in every ring L%[a; b]. (This is so-called
“absolute irreducibility.”)

(3.3) There exist unigue polynomials A and B of degrees at most n — 1
and m — 1 in x, with coefficients in Ri[a; b], such that

(3.3a) Af - Bg— R.
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(3.4) Let the coefficients a;, b; and the roots &; of f and m; of g be elements

of a field K. Then
R(f, 9) = agbgI(§; — ;) = agllg(&,) = (=)™ 1Lf(,).

(3.5) Let f and g have their coefficients in a field K. If they have a
common factor € Klx] then B = 0. Conversely if R = 0 and a, or by # 0
then f and g have a common factor € E[x].

Let now f, g be forms of degrees m, n in @y, - - -, z,. Let R( fi9; x)
denote the resultant as to z;, i.e. as if f and g were polynomials in z,.
Then:

(3.6) Let f or g have indeterminate coefficients. Then R(f, g; x,) is a
Jorm of degree mn in %y, - - -, x,_y, and in (3.3a) 4 and B are forms in all
the x; and of degrees <n — 1 and m — 1 in x,. Moreover a n.a.s.c. in order
that f, g € Kylw,, - - -, z,] both containing x, and one of them regular in
x, have a common factor containing z, is that R(f, g; z,) = 0. When it exists
the common factor is in Kg(z,, - - - , z,].

Consider now r + 1 formsinx,, - - -, z, with indeterminate coefficients
and let m; be the degree of f; and m = Ilm,. There exists a multiform
By(fos - - - f,) in the sets of coefficients of the f;,, whose coefficients are
integers, the resultant of the f,, and with the following properties:

(3.7) Ry is of degree mjm, in the coefficients of f,.

(3.8) By us absolutely irreducible in the ring of multiforms with integral
coefficients. '

{8.9) There take place identities

SAifi=a Ry, i=0,1,---,7r

where the A} are multiforms with integral coefficients in the coefficients of
the f; and in the x;.

(3.10) If one takes for the f; forms of Kylx, - -, x,] then By =0
s a n.a.s.c. in order that the system
fo=r =t =0

admit a solution with the z, not all zero and in K.
(3.11) If aal" is the highest degree term in x; of f; then Ry contains a
term Tlal"™:.

More generally given any set of forms f,, - - -, f, with indeterminate
coefficients there exists a resultant system Rig(fy, - -+, f,).i = 1,2, -+, ¢q
where each Rj is an irreducible multiform such as Ry above and now:

(3.12) Same as (3.10) with R}} =0,i=1,2,---, qas the na.s.c.

§ 3. ALGEBRAIC DEPENDENCE. TRANSCENDENCY
4. Let @ be & field over K. The elements oy, * - - ,a, of ® are said
to be algebraically dependent over K whenever they satisfy a relation
Play, "+ -, a,) =0, Plag, -+, a,) € Klog, = - - , o). If the term oy is
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actually present in P we say that a, is algebraically dependenton o, * -+, &,
over K. As the groundfield K is generally clear from the context the
mention “over K’ is usually omitted.

A transcendence base {o;} for @ over K is a set of elements of @ such
that: (a) no finite subset of the o, is algebraically dependent; (b) every
element o € @ is algebraically dependent upon some finite subset of

o}
{ }(4.1) If the number p of elements in one transcendence base is finite
(only such cases arise in the sequel) then it s the same for all other suck bases.

The number p of elements in a transcendence base is called the
transcendency of @ over K, written transc ;. @, or merely transc @ when the
particular K is clear from the context.

One may manifestly define the transcendency p over K of any set
{ag, -+ * , &} of elements of ® as the maximum number of elements
which are algebraically independent over K. Let W' = K(o, = -, o),
so that ¥ is a field between K and @. It is readily shown that transc V'

(4.2) If KCLC®, where all three are fields then transcy ® =
transey, @ 4 transcg L.

(4.3) Rational and homogeneous bases. These two concepts will be
found very convenient later. Given a field L over K we will say that a
set {o,  * * , &, of elements of Lis a rational base for L over K whenever
L=K(a, " ,%,). A set of elements {f, -, p,} of some field ¥
over L is known as a homogeneous base for L over K whenever

L= K({ﬁi/ﬁi})’ g; # 0.

If B, = 0 then this condition is equivalent to L = K({;/f,}) where {3, is
now fixed.

(4.4) If L has a finite rational base then r = transcg L is finite.

Another noteworthy property is:

(4.5) Let K have zero characteristic. Then if {og, * * * , o} is a trans-
cendence base for L over K and L is a finite extension of Koy, -, o)
there ewists an element f of L such that {oy, - * - , &, fi} is a rational base for
L. Hence if M is a field over L and ay, - - -, &, € M are such that {ocifae}
is a transcendence base for L and L is a finite extension of K({o,og}), there
exists an o, , € M with o, /oy € L such that {ug, * * * , @y} is @ homo-
geneous base for L.

§4. EXTENSION OF THE GROUNDFIELD

5. In many questions arising naturally in the study of algebraic
varieties it is necessary to replace the groundfield K by a finite pure
transcendental extension, that is to say by an extension K(u,, = * -, u,)
by a finite number of indeterminates.
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We are particularly interested in what happens then to the polynomial
ideals and their mutual relations. Since all questions are trivial for the

ideal a = 1, consisting of all polynomials of the ring K[x] = K[z, - - - , z,],
we assume throughout a = 1.

Let us suppose that the ideal a has the base {f;(x), - - -, f.(z)}. Upon
replacing X by any field LD K the f, will span in L[x] a new ideal
a* referred to as the extension of a. Let in particular L = K(u,, - - - , u,)
be an extension by indeterminates w;,. If f(z; %,, - -, %) € L[] and

disregarding a common denominator € L, we may write

fasug o u)=3f, s @ui---ulf, ..., € Kx].

Then f € a* is equivalent to: every f,...; € a. If the extension is
by a single variable u we will write

(5.1) f(@; u) = folxp™ + fil@pt + -+ -, f; € Kla].

The extension operation a — a* has the following properties:

(5.2) It preserves the relations of inclusion, swm, intersection and product.

(5.3) If p, q are a prime and a primary ideal then so are p*, q*.

(5.4) If p is the prime ideal of q then p* is the prime ideal of g* and if
p? C q then p*? C g*.

(6.5) The factorization into primary ideals is preserved.

Observe at the outset that it is sufficient to consider a simple extension
K(u). Moreover since elements of the groundfield may be multiplied
in without affecting our arguments we may always assume our poly-
nomials to be polynomials in % also. Finally (5.2) and the derivation of
(5.4), (5.5) from (5.2), (5.3) are elementary. Thus we only need to take
up the proof of (5.3). The case of prime ideals is simple and indeed it
reduces essentially to Eisenstein’s classical lemma. We consider it first.

Suppose then p prime and let

a(x; u) = ayz)u™ + ay (@™ + - - -+ a,,(2)

b(x7 u) = bﬂ(x)un + Tt + bn(x);

(5.6)

where a;, b; € K[z]. Suppose now that ab € p*. We may manifestly
suppress in @ and b the terms whose coefficients a,, b, €p. If as a
consequence say a reduces to zero then it was initially in p*. Suppose
that neither @ nor b reduces to zero. Thus we will have (5.6) with a,, b,
not in p. Since ab € p* all the coefficients of the powers of u in ab
must be in p. Hence agb, € p and since p is prime one of the factors
say @, € p. This contradiction proves that, say in a, all the coefficients
are in p*. Hence a € p* and p* is prime.
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6. The case of the primary ideal q is much more difficult. Following
E. Snapper, its treatment will be made to rest upon a noteworthy lemma
due to Dedekind.

(6.1) Lemma. Leta, b be as in (5.6) and let

ab = c(x; u) = co(X)u™" 4« + + + ¢, n(®@).
If a, B, ¢ are the ideals of K[x] spanned respectively by the a,, b;, ¢, then
a" b = ca™

We follow Dedekind’s own proof as given in: Gesammelte Werke,
pp. 36-38. It is clear that ¢ C ab hence ca™ C a™t'b. All that is necessary
then is to show that the inclusion may be reversed.

Consider first the ideal a™*'. A finite base for a*"! consists of all the
products «; of any 7 4 1 of the coefficients a,. Now a; = L PR S
19 <1y <*-:<r, Letall the products a; be ordered lexicographically,
and let us agree to set @, = 0 wherever ¢ > m. Suppose also the elements
of the base o, o, - - -, «, Written in increasing order.

Now corresponding to «; above we may introduce the determinant

(Sj:’afi’a'h‘*l"'.’an'~n‘i 7/:0,1,"',7@‘

In its expansion a;, the diagonal term, is the term of highest order:
0; = «; 4 terms «, preceding «; Taking then successively j=s,
s — 1, - -+, this relation will enable us to replace in succession, in the
base {a;}, the elements a,, o, 4, - by &, 6,y - In other words
A = {6,} is a base for a"*1.

Consider now the following system obtained by equating the powers
of win ab = c:

(6.2) aby+a, 6 +---=¢;, 1=0,1,2,---m+ n.
We may view (6.2) as a set of linear equations in the b;. The equations
beginning with a,, - - -, a, have §; for determinant of the b’s. Hence

if §; # 0, i.e. if §; does figure in the base A, then the subsystem of the
equations just mentioned yields relations

8y = 56,8, h=0,1,--,n

Ti 910
where the J;; are minors of order n of §; and thus elements of q”. Since
{0,b,} is a base for a®*1p, this relation implies a” 16 C ca”. This completes
the proof of the lemma. ‘

Returning now to our main problem the proof of (5.3) for q primary
is immediate. Let a, b € K(u){z] where b is not in g*. If ¢ = ab then
¢ € q* implies ¢ C q and b not in g* implies that b is not in q. By the
lemma a"*1p = ¢ca” C q. Since q is primary and b is not in g, a® is in
p, hence a is in p since p is prime. If p® C q, then in a° every coefficient of
% is in p® hence in g and so a® € g*. Hence g* is a primary ideal and this
completes the proof of (5.3).
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§ 5. DIFFERENTIALS (CHARACTERISTIC ZERO)

%. We shall find it convenient to organise differentiation with
differentials and not derivatives in the central position. The treatment,
largely following Ernst Snapper, is confined to a field @ of finite trans-
cendency over a groundfield K.

Let @ be of transcendency n over K. It is referred to as a differential
field whenever there is: (a) an n dimensional vector space B with D as
its scalar domain; (b) an operation d: ® — B such that if «, § €
and k € K then:

I d(a + B) = da + df; II. daf = adf + Pda; II1. dk = 0;
1V. the da, df, - - -, are a set of generators for B.

The space B is the space of the differentials of ® over K, and da is the
differential of o over K.

Immediate consequences of I, IT, IIT are

(7.1) d(ka) = kdu; do” = na" " da.
If y = «/B, then « = fy, hence quickly from II:
do. — od,
(1.2) Pl
p p

If Ry, ,%,) € K(ay, -+, «,) denote by R, the usual partial
derivative (taken as if the a; were indeterminates). Then:

(7.8) If F(xy, - - -, ®,) € Kwy, - - -, x,Jwhere the x; are indeterminates,
then F,, =0 is a n.a.s.c. for F not to contain ;.

(7.4) If Rlog, -+ -, o) € K(otg, ** +, &), oy € D then dR = 2R do;.

Tt is first proved for a polynomial then by means of (7.2) for any R.

(7.5) If W= {ay, - - * , &,} 45 a transcendence base for © then dU = {du;}

is a linear base for B.
If 8 € @ there is a relation

(1.6) Fou, f) = f + Fyf + -+ F, =0, F, € K(x),

where F(o; ) is irreducible as an element of K(x)[z]. Owing to this it
has no common factor with

F,=rz™ 14 (r — 1)Fga™2 4 - -
whose degree < r, and hence F; # 0. Applying (7.4) we find

Fﬂdﬁ + 2ZF,doa; =0
and hence

(7.7) dp = Z o g
. == @ oA
Therefore dU spans B.
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(7.8) The ordinary or partial successive derivatives of various orders
are defined in the obvious way. We merely recall:

(7.9) Let f(z) € K[x], x indeterminate. N.a.s.c. in order that ¢ € K
be an n-tuple root of f(z) are:

fe)=[f')="--=f"D)=10, f"()

(7.10) Remark. Ordinary or partial derivatives of any order may be
defined for a groundfield of any characteristic and the formal properties
(7.3) and (7.9) continue to hold.

8. Construction of a system of differentials. Take for the da,
independent vectors and compute df for any § € ® by (7.7). This
defines d obeying rules I, II, IIT over a simple extension ®g = K(a; B).
Let us show that it is unique over @;. An element y of ®; may have
various representations

y=Rla; )= Ry(o; ) =" -,
and we must show that

dR(a, f) = dRB,(a, f) = - -

In the last analysis we must prove that if S(e; 8) € K(«; §) and S(a; 8) =0
then dS(x; f) = 0. This follows however by rule III.

buppose now 3 € @, Since d is uniquely defined throughout
®,, dff is the same whether obtained as element of ®g or of @,. Hence
d is unique throughout @©.

9. We shall now show that the system (d, B) is essentially unique.

Let @, @’ be isomorphic fields over K under an isomorphism 7: ® — ¢’
preserving K, and let d, B and d', B’ have their natural meaning. A
differential 1somorphism of B onto B’ is a mapping A: B — B’ such that
ifV,V, € Band « € @ then

AV + V)= AV 4+ AV, AlaV) = 17aATV; Ada = d'(ra).

(9.1) B and B’ are differentially isomorphic. Hence in a given field
differentiation is unique to within a differential isomorphism.

If we write o, #', R’ for 7a;, 78, 7R then under our rules d'f’ is given
by (7.7) with the appropriate changes. Define now Ada; = d'a;,
Afyda;) = 7"d’oc;, and extend A linearly to the whole of B which can
be done since {da,} is a base for B. As a consequence A is manifestly
a differential isomorphism 8 — B'.

10. (10.1) If oy, - - -, oy are algebraically independent elements of
D then doy, - * -, do, are linearly independent elements of B and conversely.

The algebraic independence of the «;, ¢ << k, implies & < n = transc ®.
Hence one may then augment the set by elements o, 4, - * -, @, to form
a transcendence base U = {«,;}. Since the day, j <=, are linearly
independent elements of B (7.5) the same holds for those with § < k.



