APPLIED
COMPUTATIONAL
PHYSICS

JOSEPH F. BOUDREAU | ERIC S. SWANSON

with contributions from Riccardo Maria Bianchi

Applied Computational Physics is a graduate-level text stressing three essential
elements: advanced programming techniques, numerical analysis, and physics.
The goal of the text is to provide students with essential computational skills
that they will need in their careers, and to increase the confidence with which
they write computer programs designed for their problem domain. The physics
problems give them an opportunity to reinforce their programming skills,

while the acquired programming skills augment their ability to solve problems
in physics. The C++ language is used throughout the text. Physics problems
include Hamiltonian systems, chaotic systems, percolation, critical phenomena,
few-body and multi-body quantum systems, quantum field theory, simulation
of radiation transport, and data modeling. The book, the fruit of a collaboration
between a theoretical physicist and an experimental physicist, covers a broad
diversity of topics from both viewpoints. Examples, program libraries, and
additional documentation can be found at the companion website. Hundreds
of original problems reinforce programming skills and increase the ability

to solve real-life physics problems at and beyond the graduate level.

JOSEPH F. BOUDREAU and ERIC S. SWANSON are both professors of Physics
at the Department of Physics and Astronomy, University of Pittsburgh, USA.

ALSO PUBLISHED BY
OXFORD UNIVERSITY PRESS

Ray Huffaker, Marco Bittelli, and Rodolfo Rosa

Laurent Baulieu, John Iliopoulos, and Roland Sénéor

ISBN 978-0-19-870863-6

70

OXFORD

UNIVERSITY PRESS

9 780198’

8636

www.oup.com

soupreau swanson APPLIED COMPUTATIONAL PHYSICS

Applied Computational Physics

Joseph F. Boudreau and Eric S. Swanson

with contributions from Riccardo Maria Bianchi

OXFORD

UNIVERSITY PRESS

OXFORD

UNIVERSITY PRESS

Great Clarendon Street, Oxford, OX2 6DP,
United Kingdom

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of
Oxford University Press in the UK and in certain other countries

© Joseph E Boudreau and Eric S. Swanson 2018
The moral rights of the authors have been asserted

First Edition published in 2018
Impression: 1

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the
prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence or under terms agreed with the appropriate reprographics
rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the
address above

You must not circulate this work in any other form
and you must impose this same condition on any acquirer

Published in the United States of America by Oxford University Press
198 Madison Avenue, New York, NY 10016, United States of America

British Library Cataloguing in Publication Data
Data available

Library of Congress Control Number: 2017946193

ISBN 978-0-19-870863-6 (hbk.)
ISBN 978-0-19-870864-3 (pbk.)

DOI 10.1093/050/9780198708636.001.0001

Printed and bound by
CPI Group (UK) Ltd, Croydon, CR0 4YY

Qt® is a registered trademark of The Qt Company Ltd. and its subsidiaries.
Linux® is the registered trademark
of Linus Torvalds in the U.S. and other countries.
All other trademarks are the property of their respective owners.

Links to third party websites are provided by Oxford in good faith and
for information only. Oxford disclaims any responsibility for the materials
contained in any third party website referenced in this work.

APPLIED COMPUTATIONAL PHYSICS

For Pascale.
For Lou, Gordy, Suzy, Kris, Maura, Vin.
For Gordon V/

For Erin, Megan, Liam, and Drew.
For Max and Gudrun.

reor ut specular

Preface

New graduate students often experience something like shock when they are asked to
solve real-world problems for the first time. These problems can be only rarely solved
with pen and paper and the use of computational techniques becomes mandatory. The
role of computation in any scientific endeavor is growing, and presents an increasing set
of challenges. Numerical algorithms play a central role in theoretical prediction and in the
analysis of experimental data. In addition, we see an increasing number of less numerical
tasks taking on major importance in the life of young scientists. For example, how do
you blend together two computing languages or split a computation between multiple
computers? How does one design program libraries of numerical or scientific code for
thousands of users? How is functionality added to a million-line reconstruction program?
How can complicated datasets be visualized? What goes into a monitoring program that
runs in a control room? These tasks are not particularly numerical or even scientific,
but they are nonetheless important in the professional lives of scientists. From data
acquisition systems to solving quantum field theory or presenting information, students
face an intimidating computational environment with many languages and operating
systems, multiple users with conflicting goals and methods, and complex code solving
subtle and complicated problems.

Unfortunately, the typical student is marginally prepared for the challenges faced
in modern computational ecosystems. Most students have had some exposure to a
programming language such as C, C++, Java, or Fortran. In their first contact with
“real” code, they may well be exposed to a proliferation of legacy software that in
some cases is better used as a counterexample of good modern coding practices.
Under these circumstances the usual solution is to learn on the fly. In a bygone
era when the computing environment was simple this learning process was perfectly
satisfactory, but today undirected learning leads to many false starts and some training
has become indispensable. The search for help can be difficult because the nearby senior
physicist probably grew up in an era preceding the explosive development of languages,
paradigms, and computational hardware.

This book aims to fill some of the holes by introducing students to modern computa-
tional environments, object-oriented computing, and algorithmic techniques. We will rely
on ‘canned’ code where reasonable. However, canned code is, by definition, incapable of
solving research problems. It can at best solve portions of problems. At worst, it can lead
the student researcher to false or incomplete conclusions. It is therefore imperative that
the student understands what underlies his code. Thus an explanation of the numerical
issues involved in common computational tasks will be presented.

Sometimes the numerical methods and applications will be quite technical; for this
reason we regard this book as appropriate for newly graduated students. Our examples

viii Preface

will be drawn primarily from experimental and theoretical physics. Nevertheless, the
book is also useful for students in chemistry, biology, atmospheric science, engineering,
or any field in which complex analytical problems must be solved.

This text is meant for advanced (or graduate) students in the sciences and engineering.
The physics ranges from advanced undergraduate topics in classical and quantum
mechanics, to very advanced subject matter such as quantum field theory, renormal-
ization, and scaling. The concepts of object oriented computing are introduced early in
the text and steadily expanded as one progresses through the chapters. The methods of
parallel computation are also introduced early and are applied in examples throughout.
Since both the physics and the coding techniques can be replete with jargon, we attempt
to be practical and provide many examples. We have not made any effort to prune away
any discussion of fairly pedestrian material on the pretext that it is not advanced enough
for a sophisticated audience. Our criterion is that the topics we discuss be useful, not that
they be graduate-level, particularly since some topics are interdisciplinary in nature.

The numerical algorithms we consider are those applied in the major domain areas
of physics. Classical problems involving a finite number of degrees of freedom are most
often reduced to a coupled set of first-order differential equations. Those involving an
infinite number of degrees of freedom require techniques used to solve partial differential
equations. The study of quantum mechanical systems involves random processes, hence
the temporal evolution of the system is handled though simulation of the underlying
randomness. The computation of physical processes thus can be generally categorized
according to the number of degrees of freedom and the stochastic or deterministic nature
of the system. More complicated situations can mix these. For example, to follow a
charged particle through a magnetic field in the presence of multiple scattering involves
both deterministic and stochastic processes.

The flip side of simulation is data modeling. This is the procedure by which a
mathematical description of data, often along with the values of physically interesting
parameters, is obtained. Data modeling is an activity that consumes much of the time and
creativity of experimental physicists working with datasets, large or small. While many
treatises exist on the statistical analysis of data, the goal here is to explore, in somewhat
greater detail than is usually found, the computational aspects of this field.

This text is neither a treatise on numerical analysis nor a guide to programming, but
rather strives to develop practical skills in numerical and non-numerical methods applied
to real world problems. Because of the emphasis on practical skills, students should
expect to write programs and to refine and develop their programming techniques along
the way. We assume a basic knowledge of C++ (the part of the language taken directly
from C, minus the anachronisms), and treat the newer features in dedicated chapters. We
do not, however, give a complete lesson on the syntax and symantics of any language,
so we advise the reader who has not mastered C++ to learn it in parallel using any one
of a number of sources. Our emphasis can then fall on using the language effectively for
problems arising in physics.

A key ingredient to effective programming nowadays is mastery of object-oriented
programming techniques—we strive to develop that mastery within the context of
greatest interest to the target audience, namely physics. As noted in Numerical Recipes

Preface ix

(Press 2007), object-oriented programming has been “recognized as the almost unique
successful paradigm for creating complex software”. As a result, object-oriented tech-
niques are widespread in the sciences and their use is growing. The physicist appreciates
object oriented programming because his day-to-day life is filled with a rich menagerie
of interesting objects, not just integers and real numbers, but also vectors, four-vectors,
spinors, matrices, rotation group elements, Euclidean group elements, functions of one
variable, functions of more than one variable, differential operators, etc. One usually gets
more from a programming paradigm that allows user-defined datatypes to fill in gaps left
at the language level. Encapsulation and polymorphism can be effectively used to build
up a more functional set of mathematical primitives for a physicist—and also to build up
an important set of not-so-mathematical objects such as are found in other nonscientific
code.

Many books are devoted to object oriented analysis and design, and while some of
these treatises are perfect for their target audience, a typical scientist or engineer most
likely gets tired of examples featuring the payroll department and looks for a discussion
of object oriented programming that “speaks his language”. Accordingly, we include
three chapters on object oriented programming in C++: Encapsulation, Polymorphism,
and Templates. Other chapters of the book provide excellent examples of object-oriented
techniques applied to various practical problems.

A companion web site has been established for this text at:

e http://www.oup.co.uk/companion/acp

The site includes example code (EXAMPLES area), skeletons which students can use
as a starting point for certain exercises appearing in the text (SKELETONS area), and
raw data for other exercises (DATA area). In addition the site provides user’s guides,
reference manuals, and source code for software libraries provided free of charge and
used within this text. This software is licensed under the GNU Lesser General Public
License. In referencing examples, skeletons, data, etc., we generally omit the full URL
and refer simply to the directory, e.g. EXAMPLES, SKELETONS, DATA, etc.

Course organization

It is our experience that most of the material in this text can be covered in two terms
of teaching. There are three main strands of emphasis: computational, numerical, and
physical, and these are woven together, so the reader will find that emphasis alternates,
though the book begins with more computational topics, then becomes more numerical,
and finally more physical.

Computational topics include: Building programs (Chap 1), Encapsulation (Chap 2),
Some useful classes (Chap 3), How to write a class (Chap 6), Parallel computing
(Chap 9), Graphics for physicists (Chap 10), Polymorphism (Chap 12), and Templates,
the standard library, and modern C++ (Chap 17).

X Preface

Numerical topics include Interpolation and extrapolation (Chap 4), Numerical
quadrature (Chap 5), Monte Carlo methods (Chap 6), Ordinary differential equations
(Chap 11).

Topics related to applications in experimental and theoretical physics are Percolation
and universality (Chap 8), Nonlinear dynamics and chaos (Chap 14), Rotations and
Lorentz transformations (Chap 14), Simulation (Chap 15), Data modeling (Chap 16),
Many body dynamics (Chap 18), Continuum dynamics (Chap 19), Classical spin
systems (Chap 20), Quantum mechanics (Chap 21 and 23), Quantum spin systems
(Chap 22), and Quantum field theory (Chap 24).

Finally, there are nearly 400 exercises of widely varying difficulty in the text. To assist
students and instructors in selecting problems, we have labelled those exercises that are
meant to be worked out without the aid of a computer as theoretical [T]; exercises which
are more open-ended and require significant effort are elevated to the status of a project
and labelled with a [P].

Acknowledgments

We are grateful to many people for encouragement and for lending their expertise.
Among these are Jifi Cizek, Rob Coulson, Paul Geiger, Jeff Greensite, Ken Jordan,
Colin Morningstar, James Mueller, Kevin Sapp, Seren Toxvaerd, and Andrew Zentner.
J. Boudreau wishes to thank Petar Maksimovic and Mark Fishler for inspiration and help
with the development of Function Objects (Chapter 3), Lynn Garren for support of the
original package which appeared in the CLHEP class library, and Thomas Kittelmann
and Vakho Tsulaia for their collaboration over the years. Preliminary versions of this
text, and particularly the exercises, have been inflicted on our graduate students over the
years—their help has been instrumental in effecting many important revisions. We thank
them wholeheartedly.

Contents

1 Building programs in a Linux environment

1.1 The editor, the compiler, and the make system
1.1.1 Troubleshooting mysterious problems
1.2 A quick tour of input and output
1.3 Where to find information on the C++ standard library
1.4 Command line arguments and return values
1.5 Obtaining numerical constants from input strings
1.6 Resolving shared libraries at run time
1.7 Compiling programs from multiple units
1.8 Libraries and library tools
1.9 More on Makefile
1.10 The subversion source code management system (SVN)
1.10.1 The SVN repository
1.10.2 Importing a project into SVN
1.10.3 The basic idea
1.11 Style guide: advice for beginners
1.12 Exercises
Bibliography

2 Encapsulation and the C++ class

2.1 Introduction
2.2 The representation of numbers
2.2.1 Integer datatypes
2.2.2 Floating point datatypes
2.2.3 Special floating point numbers
2.2.4 Floating point arithmetic on the computer
2.3 Encapsulation: an analogy
2.4 Complex numbers
2.5 Classes as user defined datatypes

2.6 Style guide: defining constants and conversion factors in one place

2.7 Summary
2.8 Exercises
Bibliography

3 Some useful classes with applications

3.1 Introduction
3.2 Coupled oscillations

O 3N W =

11
11
12
16
18
20
21
22
22
25
27
29

30

30
31
32
33
34
36
37
38
43
45
47
48
49

51

51
52

xii Contents

3.3 Linear algebra with the Eigen package 54
3.4 Complex linear algebra and quantum mechanical scattering
from piecewise constant potentials 57
3.4.1 Transmission and reflection coefficients 59
3.5 Complex linear algebra with Eigen 60
3.6 Geometry 63
3.6.1 Example: collisions in three dimensions 64
3.7 Collection classes and strings 65
3.8 Function objects 67
3.8.1 Example: root finding 70
3.8.2 Parameter objects and parametrized functors 74
3.9 Plotting 76
3.10 Further remarks 7T
3.11 Exercises 78
Bibliography 83
4 Interpolation and extrapolation 84
4.1 Lagrange interpolating polynomial 85
4.2 Evaluation of the interpolating polynomial 87
4.2.1 Interpolation in higher dimensions 89
4.3 Spline interpolation 90
4.3.1 The cubic spline 90
4.3.2 Coding the cubic spline 93
4.3.3 Other splines 94
4.4 Extrapolation 95
4.5 Taylor series, continued fractions, and Padé approximants 97
4.6 Exercises 102
Bibliography 106
5 Numerical quadrature 107
5.1 Some example problems 108
5.1.1 One-dimensional periodic motion 108
5.1.2 Quantization of energy 110
5.1.3 Two body central force problems 111
5.1.4 Quantum mechanical tunneling 112
5.1.5 Moments of distributions 113
5.1.6 Integrals of statistical mechanics 115
5.2 Quadrature formulae 118
5.2.1 Accuracy and convergence rate 124
5.3 Speedups and convergence tests 126
5.4 Arbitrary abscissas 128
5.5 Optimal abscissas 129
5.6 Gaussian quadrature 132

5.7 Obtaining the abscissas 135

Contents

5.7.1 Implementation notes
5.8 Infinite range integrals
5.9 Singular integrands
5.10 Multidimensional integrals
5.11 A note on nondimensionalization
5.11.1 Compton scattering
5.11.2 Particle in a finite one-dimensional well
5.11.3 Schrédinger equation for the hydrogen atom
5.12 Exercises
Bibliography

6 How to write a class

6.1 Some example problems
6.1.1 A stack of integers
6.1.2 The Jones calculus
6.1.3 Implementing stack
6.2 Constructors
6.3 Assignment operators and copy constructors
6.4 Destructors
6.5 const member data and const member functions
6.6 Mutable member data
6.7 Operator overloading
6.8 Friends
6.9 Type conversion via constructors and cast operators
6.10 Dynamic memory allocation
6.10.1 The “big four”
6.11 A worked example: implementing the Jones calculus
6.12 Conclusion
6.13 Exercises
Bibliography

7 Monte Carlo methods

7.1 Multidimensional integrals
7.2 Generation of random variates
7.2.1 Random numbers in C++11
7.2.2 Random engines
7.2.3 Uniform and nonuniform variates
7.2.4 Histograms
7.2.5 Numerical methods for nonuniform variate generation
7.2.6 The rejection method
7.2.7 Direct sampling (or the transformation method)
7.2.8 Sum of two random variables
7.2.9 The Gaussian (or normal) distribution
7.3 The multivariate normal distribution, x 2, and correlation

xiii

137
139
140
141
142
142
143
144
145
150

151

152
152
152
154
160
162
165
166
167
167
170
171
174
176
181
190
191
195

196

197
198
198
199
200
202
204
204
207
210
211
212

Xiv

Contents

7.4 Monte Carlo integration
7.4.1 Importance sampling
7.4.2 Example
7.5 Markov chain Monte Carlo
7.5.1 The Metropolis-Hastings algorithm
7.5.2 Slow mixing
7.5.3 Thermalization
7.5.4 Autocorrelation
7.5.5 Multimodality
7.6 The heat bath algorithm
7.6.1 An application: Ising spin systems
7.6.2 Markov chains for quantum problems
7.7 Where to go from here
7.8 Exercises
Bibliography

Percolation and universality

8.1 Site percolation
8.1.1 The cluster algorithm
8.1.2 Code verification
8.1.3 The percolation probability
8.2 Fractals
8.3 Scaling and critical exponents
8.3.1 The correlation length and the anomalous dimension
8.3.2 Additional scaling laws
8.4 Universality and the renormalization group
8.4.1 Coarse graining
8.4.2 Monte Carlo renormalization group
8.5 Epilogue
8.6 Exercises
Bibliography

Parallel computing

9.1 High performance computing
9.2 Parallel computing architecture
9.3 Parallel computing paradigms
9.3.1 MPI
9.3.2 openMP
9.3.3 C++11 concurrency library
9.4 Parallel coding
9.5 Forking subprocesses
9.6 Interprocess communication and sockets
9.7 Exercises
Bibliography

216
219
220
221
223
223
225
227
228
229
229
231
232
233
239

240

241
241
244
244
249
252
253
256
258
260
263
264
265
272

274

274
278
279
279
285
289
299
300
302
308
310

