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ACOURSE IN MATHEMATICAL ANALYSIS

Volume III: Complex Analysis, Measure and Integration

The three volumes of A Course in Mathematical Analysis provide a full
and detailed account of all those elements of real and complex analysis that
an undergraduate mathematics student can expect to encounter in the first
two or three years of study. Containing hundreds of exercises, examples
and applications, these books will become an invaluable resource for both
students and instructors.

Volume I focuses on the analysis of real-valued functions of a real variable.
Volume IT goes on to consider metric and topological spaces, and functions of
a vector variable, and includes an introduction to the theory of manifolds in
Euclidean space. This third volume develops the classical theory of functions
of a complex variable. It carefully establishes the properties of the complex
plane, including a proof of the Jordan curve theorem. Lebesgue measure
is introduced, and is used as a model for other measure spaces, where the
theory of integration is developed. The Radon—Nikodym theorem is proved,
and the differentiation of measures is discussed.

D. J. H. GARLING is Emeritus Reader in Mathematical Analysis at the
University of Cambridge and Fellow of St. John’s College, Cambridge. He
has fifty years’ experience of teaching undergraduate students in most areas
of pure mathematics, but particularly in analysis.
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Introduction

This book is the third and final volume of a full and detailed course in the
elements of real and complex analysis that mathematical undergraduates
may expect to meet. Indeed, I have based it on those parts of analysis that
undergraduates at Cambridge University meet, or used to meet, in their first
two years. I have however found it desirable to go rather further in certain
places, in order to give a rounded account of the material.

In Part Five, we develop the theory of functions of a complex variable. To
begin with, we consider holomorphic functions (functions which are complex-
differentiable) and analytic functions (functions which can be defined by
power series), and the results seem similar to those of real case. Things
change when path-integrals are introduced. To use these, a good under-
standing of the topology of the plane is needed. We give a careful account
of this, including a proof of the Jordan curve theorem (every simple closed
curve has an inside and an outside). With this in place, various forms of
Cauchy’s theorem and Cauchy’s integral formula are proved. These lead on
to many magical results. Chapter 25 is geometric. A single-valued holomor-
phic function is conformal (that is, it preserves angles and orientations). We
consider the problem of mapping one domain conformally onto another, and
end by proving the celebrated Riemann mapping theorem, which says that
if U and V' are domains in the complex plane which are proper subsets of
the plane and are simply-connected (there are no holes) then there exists a
conformal mapping of U onto V. In Chapter 26, we apply the theory that
we have developed to various problems, some of which were first introduced
in Volume 1.

In Volume I, we developed properties of the Riemann integral. This is very
satisfactory when we wish to integrate continuous or monotonic functions,
and is a useful precursor for the complex path integrals that we consider
in Part Five, but it has serious shortcomings. In Part Six, we introduce
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Lebesgue measure on the real line. Abstract measure theory is a large and
important subject, but the topological properties of the real line make the
construction of Lebesgue measure on the real line rather straightforward.
With this example in place, we introduce the notion of a measure space,
and the corresponding space of measurable functions. This then leads on
easily to the theory of integration, and the space LP of p-th power inte-
grable functions. These results are used to construct Lebesgue measure in
higher dimensions, using Fubini’s theorem. Properties of the Hilbert space
L? are then used to give von Neumann’s proof of the Radon—-Nikodym the-
orem, and this is used to establish differentiability properties of measures
and functions on R%. Almost all measures that arise in practice are defined
on topological spaces, and we establish regularity properties, which show
that such measures are rather well behaved. A final chapter uses the the-
ory that we have established to obtain further results, largely concerning
Fourier series (first considered in Volume I), and the boundary behaviour of
harmonic functions on the unit disc.

The text includes plenty of exercises. Some are straightforward, some
are searching, and some contain results needed later. All help develop an
understanding of the theory: do them!

I am again extremely grateful to Zhuo Min ‘Harold’ Lim, who read the
proofs and found many errors. Any remaining errors are mine alone. Cor-
rections and further comments can be found on a web page on my personal
home page at www.dpmms.cam.ac.uk.
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20

Holomorphic functions and analytic functions

20.1 Holomorphic functions

Suppose that f is a continuous complex-valued function defined on an open
subset U of the complex plane C. Recall that the set U is the union of
countably many connected components, each of which is an open subset of
U (Volume II, Proposition 16.1.15 and Corollary 16.1.18). The behaviour
of f on each component does not depend on its behaviour on the other
components. For this reason, we restrict our attention to functions defined
on a connected open subset of C; such a set is called a domain.

We begin by considering differentiability: the definition is essentially the
same as in the real case. Suppose that f is a complex-valued function on
a domain U, and that z € U. Then f is differentiable at z, with derivative
f'(2), if whenever € > 0 there exists 4 > 0 such that the open neighbour-
hood Ns(z) = {w : |w — z| < 8} of z is contained in U and such that if
0 < |w— 2| < 4 then

f(w) = f(2)

w =3z

—fl(»)| <e

In other words,

f(w) — f(2)

— f(2) as w — z.
w—2z

Thus if f is differentiable at z, then the derivative f’(z) is uniquely
determined. The derivative f’(z) is also denoted by %(z).

Proposition 20.1.1 Suppose that f is a complez-valued function on a

domain U, that Ns(z) € U, and that | € C. The following statements are
equivalent.

627



628 Holomorphic functions and analytic functions

(i) f is differentiable at z, with derivative l.
(ii) There is a complez-valued function r on Nj(0) = Ns(0)\ {0} such that

fz4+w) = f(z) +lw+r(w) for 0 < |w| <6

for which r(w)/w — 0 as w — 0.
(iii) There is a complez-valued function s on Ng(0) such that

fz+w) = f(z)+ { + s(w))w for jw| < d

for which s(0) =0 and s is continuous at 0.

If so, then f is continuous at z.

Proof  This corresponds to Volume I, Proposition 7.1.1, and the easy proof
is essentially the same. O

If f is differentiable at every point of U, then we say that f is holomorphic
on U. If U = C, then we say that f is an entire function. Although the
form of the definition of differentiability that we have just given is exactly
the same as the form of the definition in the real case, we shall see that
holomorphic functions are very different from differentiable functions on an
open interval of R.

Example 20.1.2 Let f(z) =1/z for 2 € C\ {0}. Then f is holomorphic
on C\ {0}, with derivative —1/22.

For if 0 < |w| < |z|, then z 4+ w # 0 and

flz+w)—fz) -1 _ 22— (z+w)ztwz+w) _ w

w 22 w2?(z + w) C 22(z+w)

— 0

as w — 0.

Proposition 20.1.3 Suppose that f and g are complez-valued functions
defined on a domain U, and that f and g are differentiable at z. Suppose
also that A\, pu € C.

(i) Af + pg is differentiable at z, with derivative Af'(z) + pg'(2).
(ii) The product fg is differentiable at z, with derwative f'(2)g(z) +
f(2)g' ().

Proof  An easy exercise for the reader. m|

Theorem 20.1.4 (The chain rule) Suppose that [ is a compler-valued
function defined on a domain U, that h is a complez-valued function defined
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on a domain V and that f(U) C V. Suppose that f is differentiable at z
and that h is differentiable at f(z). Then the composite function ho f is
differentiable at z, with derivative h'(f(2)).f'(z).

Proof There are two possibilities. First, there exists 6 > 0 such that
Ns(z) CU and f(z +w) # f(z) for 0 < |w| < 6. If 0 < |w| < § then

h(f(z +w)) = h(f(2)) _ (h(f(z+w)) —h(f(z))> (f(2+w) —f(Z)>
w fle+w) = flw) ) w '

Since f is continuous at z, f(z +w) — f(z) = 0 as w — 0, and so

h(f(z + w)) — h(f(2))
f(z+w) = f(2)

Since (f(z +w) — f(2))/w — f'(2) as w — 0, the result follows.

Secondly, z is the limit point of a sequence (z,)52, in U \ {z} for which
f(2n) = f(2). In this case it follows that f’(z) = 0, and we must show that
(ho f)'(z) = 0. We use Proposition 20.1.1. Let b = f(z). There exist n > 0
such that Ny(f(2)) € V and a function ¢ on N, (0), with £(0) = 0, such that
h(b+k) = h(b) + (R (b) +t(k))k for k € Ny(0) and such that ¢ is continuous
at 0. Similarly, there exist 6 > 0 such that Ng(z) C U and a function s on
Ns(0), with s(0) = 0, such that f(z + w) = b+ s(w)w for h € N5(0) and
such that s is continuous at 0. Since f is continuous at z, we can suppose
that f(Ns(z)) C Ny(b). If 0 < |w| < d then

— W (f(2)) as w — 0.

h(f(z +w)) = h(b+ s(w)w) = h(b) + (I (b) + t(s(w)w))s(w)w

so that
S+ wzl)) — hf(2) = (K (b) + t(s(w)w))s(w) — 0 as w — 0,
since s(w) — 0 and t(s(w)w) — 0 as w — 0. O

This is essentially the same proof as in the real case. But, as we shall
see (Theorem 23.1.1), the second case can only arise if f is constant on U:
complex differentiation is in fact very different from real differentiation.

Corollary 20.1.5 Suppose that g s a complex-valued function on U,
which is differentiable at z. If g(z) # 0 then there is a neighbourhood
Ns(z) € U such that g(w) # 0 for w € Ng(z). The function 1/g on
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Nj(z) is differentiable at z, with derivative —g'(z)/g(z)?. Furthermore f/g
is differentiable at z, with derivative

(f_)' (z) = {2)9(2) ~ £(2)d (2)
g (9(2))? '

Proof Since g is continuous at z, there is a neighbourhood Ns(z) C U
such that g(w) # 0 for w € N3(z). Then g(Nj(z)) € C\ {0}. Let h(z) = 1/2
for z € C\ {0}. Then the first result follows from the chain rule, and the
second from Proposition 20.1.3. O

For example, if p(z) = ag + -+ + a™2" is a polynomial function, then p
is an entire function, and p/(z) = a; + 2a2z + - - - + nap2z""!. Similarly, if p
and ¢ are polynomials, and U is an open set in which g has no zeros then
the rational function r(2z) = p(z)/q(z) is holomorphic on U, and

q(2)p'(2) — 4'(2)p(2)
q(2)? '

r'(s) =

Exercises

20.1.1 Suppose that f is a holomorphic function on N; (i) and that (f(2))° =
z for z € N1(i). What is f/(2)?

20.1.2 Suppose that f is a holomorphic function on D = {z € C : |2| < 1}.
Show that the set {n € N : f(1/(n+ 1)) = 1/n} is finite.

20.2 The Cauchy—Riemann equations

Suppose that f is a complex-valued function on a domain U, and that z =
z+1iy € U. We can write f(z) as u(z,y)+iv(z,y), where u(z,y) and v(z, y)
are the real and imaginary parts of f(z). The functions u and v are real-
valued functions of two real variables. How are differentiability properties of
f related to differentiability properties of v and v?

Let us make this more explicit. Let k& : R?> — C be defined by setting
k((x,y)) = = + iy; k is a linear isometry of R? onto C, considered as a real
vector space. Let j : C — R? be the inverse mapping. If f is a complex-
valued function on U, let f = jofok; fisamapping from the open set 3 (U)
into R?. If f(z,y) = (u(z,y),v(z,v)), then f(z + iy) = u(z,y) + iv(z,y):

T+ 1y 7, flxz+iy) = u(z,y) + iv(z,y)

| ’

(@y) —— (u(zy)v(z:y))



