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Preface

The first edition of my book on The application of

absorption spectra to the study of vitamins and hor-

mones (1939) included in its Introduction the following

paragraphs:
Studies in absorption spectra interest chemists
from many different points of view. Applied to
diatomic molecules and the simpler polyatomic
molecules, they yield valuable information on the
intimate structure of the molecules, so that
moments of inertia, internuclear distances, valency
vibrations, valence angles and characteristic fre-
quencies may be deduced. For the large poly-
atomic molecules with which this booklet is
concerned information of such precision is at
present out of"the question.

Spectroscopic research in this field is thus much
more empirical, and its value lies in its use as an
a:ljz{‘nc'l to biochemical and organic methods of
study. In spite, however, of this serious limitation,
the recent developments in knowledge concerning
physiologically active substances owe much to
spectral absorption curves in the two directions
of elucidating photochemical changes and in pro-
viding characteristic ‘labels’ for substances the
existence or importance of which rests on bio-
logical methods of experimentation. Vitamin re-
search must always accept the animal test as the
first and last court of appeal; the main service of
absorption spectra lies in the possibility (which
may not, of course, always eventuate) of supple-
menting the physiological description of an X-sub-
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stance by means of a physical criterion capable of
aiding in identification and analysis.

The Preface to the second edition (1942) acknow-
ledged my debt to E. . C. Baly and 1. M. Heilbron,
and to the Medical Research Council which, through
Edward Mellanby, supported my investigations on
vitamins A, D and E and, incidentally, introduced me
to inter-laboratory cooperation and the committee-
round, from which escape is so difficult. In this Preface
I wrote:

In the last twenty years the subject of Absorption
Spectra has ceased to be a minor and auxiliary
speciality within chemistry and has become a very
versatile tool, almost indispensable in many fields
of research. The subject thus affords a good van-
tage point. More and more workers. having other
main interests, find it necessary to make use of ab-
sorption spectra, and they need a certain mininium
acquaintance with the methods of experimentation
and interpretation. Similarly, the spectroscopists
(of whom there are several varieties) need to see
their subject against a wider background. This
book is a contribution to the work of liaison. It
reviews many brilliant papers, distinguished by
patient work, great skill and insight, but it is much
more a record of small advances. the cumulative
effect of which is prodigious in its implications.
The great days of line spectra are over, with the
developments of' quantum theory in the first
third of the century, sub-atomics has become neat



and tidy. Similarly, quantum mechanics is pro-
viding an adequate theory of the absorption spec-
tra of simple molecules. A great clarification of
the theory of large molecules has begun to take
shape and in the next few years the study of
absorption spectra will play its part in a process
destined to affect the outlook of all chemists.

Much of the g otation needs no apology today, al-
though the naive reference to sub-aiomics must raise
a smile. (My first war-time work concerned eas-war-
fare, which, to the leading chemists of the day, was a
more immediate threat than atomic energy.)

At the head of the first chapter of the second editivi
was the following quotation:

‘Les données numériques qui caracterisent
I’absorption inégale des diverses lumiéres
conduiront peut-étre prochainement a une
méthode d’analyse chimique universelle.’
(BERTHELOT, Science et philosophie.)

In 1941 nobody could have foreseen how today ultra-
violet and infrared spectroscopy, nuclear magnetic
resonance and mass spectroscopy together with optical
rotatory dispersion, circular dichroism and other
techniques have lightened the labours of chemists and
biochemists. Berthelot’s hopes have come true.

I have often been asked by the Publishers and by
many scientific friends to write a third edition. My
failure to do so was due first to pre-occupation with
the work of a long succession of research students to
whom I owe much. In the second place it was due to the
burden of service on committees academic, official and
semi-official, and in particular to the task of reading
and understanding the relevant literature. Such work
is doubtless necessary and I have felt it to be part of
the price the academic scientist has to pay for the
privileges he enjoys.

A good deal of water has flowed under the bridges
since 1942 and it seems that an introduction to many
aspects of spectroscopy has become necessary in
undergraduate courses for chemists, biochemists and,
indeed, many biologists. Thanks to advances in elec-
tronics and in the design of instruments generally, users
are now more concerned with what an instrument can
do rather than how it does it. The making of measure-
ments has become easier, quicker and more accurate
than was formerly the case. Moreover, there is no lack
of intreductory textbooks dealing with the theory and
practice of the main spectroscopic methods.

1 have therefore in the present volumes used a new
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title and have aimed at displaying various spectroscopic
approaches in action. sometimes concerted and at
other times working selectively, in the solution of bio-
chemical problems. The modern biochemist needs a
very wide background knowledge in both biology and
chemistry, but he cannot be a master of every trade.-
The designers of scientific instruments have relieved
him of many tasks and specialists in physical methods
have assembled a body of classified information
which he can put to good use.

Those of us whose interest in biochemistry began
some fifty years ago have seen immense advances
and have enjoyed participating in them and in
learning about them. 1 have tried in this book to
interest the reader in both the biochemistry and the
spectroscopy, but 1 have also borne in mind the
worker in a particular field who needs rather full
references to the literature.

In the past twenty-five years new Schools of Bio-
chemistry have multiplied all over the world and the
number of students has increased greatly. The prevail-
ing pattern of biochemical research is a phase of
surging advance leading to rapid and large-scale con-
solidation, followed by diminishing returns and re-
direction of effort. In preparing this book I found
plenty of ‘applied” problems requiring attention and
holding out promise. A mature science has respon-
sibility to undertake research that is necessary, timely
and practicable, It is encouraging to know that very
many biochemists are doing that kind of work and
gaining satisfaction from it.

I am indebted to the Ieverhulme Trust for the
award of an Emeritus Fellowship which permitted me
to continue writing after retirement. Mrs M. Hilditch
acted as part-time secretary under this arrangement
and her assistance has been invaluable. The late
Professor R. J. Pumphrey kindly offered me a room
in the Zoology Department and Professor A. J. Cain
extended the’ hospitality. 1 have throughout had the
use of the University Library and have often visited
the Library of the Chemical Society at Burlington
House. I wish also to thank the various societies and
authors whose diagrams I have used and to apolo-
gize for any inadvertent failure to contact authors for
permission. The sources of most diagrams are given
in the figure captions, with a complete reference at-the
end of the chapter, but the following should also be
included: Fig. 2.4, Golterman & Clymo (1967): Figs.
4.1-4.7, Morton et al. (1934); Fig. 4.10, Morton &
Stubbs (1939); Figs. 4.11-4.23, Morton & Stubbs



(1940); Figs. 6.6-6.8, 6.11-6.12, Mayneord & Roe
(1935); Fig. 8.9, Wetlaufer et al. (1959); Fig. 8.23,
Bendit (1967); Figs. 8.30-8.31, Shifrin (1965); Figs.
9.6-9.11, Mason (1959); Fig. 9.14, Hearn et al. (1951);
Figs. 13.24-13.25, Siegel et al. (1959); Fig. 15.18,
Crawford & Jensen (1971); Fig. 16.10, Dowling (1960);

Fig. 17.1, White et al. (1963); Figs. 17.3-17.4, Kishi
et al. (1966).

Finally I must thank my wife for her tolerance and

patience as well as her encouragement over the years.

The University of Liverpool

October 1974
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1 Introduction

1.1 Introductory

In recent years the task of establishing the structures of
most new natural products has been made far easier
than once seemed possible. High resolution mass
spectroscopy leads to accurate molecular weights and
sets definite limits to possible empirical formulae.
Fragmentation patterns, nuclear magnetic resonance,
infrared absorption, Raman spectra, ultraviolet absorp-
tion, optical rotatory dispersion and circular di-
chroism all provide evidence such that chemists today
enjoy a flying start. X-ray crystallography too makes
its own superb contribution.

The designers and makers of elaborate scientific
instruments have greatly facilitated the gathering of
reliable information. Most of the techniques are now
explained, at least in principle, in undergraduate
courses. Each physical method has, however, specialists
thrusting into new territory and revealing more and
more sophisticated aspects of structure and function.
An important aspect of the new situation is that a good
part of the effort once needed for recognizing and
characterizing the molecules participating in complex
biological processes is now deflected to elucidating
modes of action. Biochemists should be able to inter-

pret the information derived from a wide range of-

spectroscopic investigations. They will then be more
free, and more competent, to clarify the roles of indi-
vidual compounds in living organisms.

In the period immediately after the 1914-1918 War
experimental work on infrared absorption spectra of
organic compounds was a task for specialists. Coblentz

had laid down firm foundations but serious technical
difficulties persisted and even as late as 1938 it could
be said that ‘the technique for accurate work is neither
easily nqr cheaply acquired’. The advances in instru-
mentation which came later gradually reduced to
simple routine much of the gathering of data.

The pioneers of absorption spectroscopy in the
ultraviolet and visible regions (Hartley, Dobbie,
Hantzsch, Baly and others) managed to obtain only
semi-quantitative curves. They had to use photo-
graphic methods for recording spectral transmission by
solutions of organic substances, and although the
blackening of the developed photographic plate could
be measured accurately, both theoretical and practical
difficulties remained. In particular when the product It
was constant (I=light intensity, t=time of exposure)
the blackening was not constant. In fact a relation
It* =constant held, but » (the Schwarzschild exponent)
showed considerable variation between different kinds
of photographic plates. The advent of suitable photo-
meters permitted reasonable accuracy to be achieved
in the measurement of absorption spectra in the visible
and ultraviolet regions. Twyman’s sector photometer
(invented just before the 1914-1918 War) came into
wide use among specialists. The light source was a high
tension condensed electric spark between metallic
electrodes. A long-focus sector photometer was made
specially for Baly’s group at Liverpool so as to allow
an intense arc between iron and nickel rods to be used
instead of a spark. Various improved photometers
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were devised (Judd-Lewis, Spekker) but the Twyman
instrument proved easier to use. It was not theoreti-
cally impeccable (because of the Schwarzschild factor)
but there was a compensatory intermittency effect on
the blackening of the plate. The measurements
remained tedious and some skill and experience was
needed for +2%, accuracy in measuring extinction
coefficients. The light sources moreover emitted line
spectra, a fact which militated against the measurement
of absorption displaying fine structure, particularly
in vapour spectra. Light sources with continuous
spectra were available for work in the visible and
near-ultraviolet regions but there was still need for
a stable light source having a spectrum continuous
down to 200 nm. An early attempt in that direction
was a condensed spark between aluminium electrodes
under water. The spectrum was continuous but the
spark was erratic and very noisy. An underwater spark
between tungsten electrodes (Fulweiler & Barnes,
1922) was perfected at the Bureau of Standards by
Brode. It involved a rotatory auxiliary spark gap in air
and a spark under water actuated by a Tesla discharge
at a very high voltage. This light source, in conjunction
with a short-focus Twyman sector photometer, proved
highly satisfactory apart from its noise and the fact
that it was a source of electrical interference.

A hydrogen discharge tube associated with the
names of Bay and Steiner was a further development.
Different versions of hydrogen ‘lamps’ were all at
first quite sizable and had to be connected to a source
of (purified) hydrogen: they were however noiseless
and provided a contihuous spectrum down to 210 nm.

Considerable advances in electronics led to the use
of small and highly reliable hydrogen “lamps’ which
today form part of standard photoelectric spectropho-
tometers. They are now taken very much for granted
but they were however the result of a prolonged effort
to find the best light source for a new generation of
spectrophotometers.

Visual spectrophotometery over the range 440-760
nm continues to have some advantages and the com-
bination of the Hilger constant deviation spectro-
meter and the Nutting (or Konig-Martens) photo-
meter has a fine record of work done. Nevertheless
this technique is obsolescent and for many purposes
recording spectrophotometers meet the needs better.

Photoglectric spectrophotometery began with very
‘individual® assemblies using a mercury vapour lamp
as light source and the work of von Halban (von
Halban & Siedentopf, 1922) overcame numerous
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difficulties. Historians of the subject will find many
other significant developments (cf. Suhrmann &
Kollath, 1928; Warburg et al., 1929). The work of
Michaelson & Liebhafsky (1936) assisted Hardy in his
important studies which led to recording ultraviolet
spectrophotometers.

The appearance of the Cary & Beckman spectro-
photometers, followed by many rather similar instru-
ments, led to an enormous widening of the field of users
of ultraviolet absorption. The manually operated
photoelectric spectrophotometers were capable of an
accuracy of +0-2% and this allowed a fresh approach
to analytical work particularly in respect of correction
for irrelevant absorptions. On the technical side Edis-
bury’s book (1966) is of great value to new entrants to
this field.

With respect to infrared spectroscopy applied to
organic substances, here too remarkable advances in
instrumentation have been made with parallel develop-
ments in the interpretation of spectra. Rock salt prisms
remain widely used although prisms of KBr, LiF,
CaF, and CsBr are also used. Prism-grating spectro-
photometers and precision-grating spectrometers are
now available. Selection of an instrument depends on
the nature of the problem to be tackled. Some rela-
tively cheap recording spectrophotometers are easy to
use and maintain and give excellent service for semi-
quantitative work, while the better performance
of more expensive instruments meets special needs.
The literature distributed by manufacturers is very
helpful and most centres of organic or biochemi-
cal research now have workers experienced in the
field. Infrared instrumentation is discussed briefly by
Rao and more fully by Conn & Avery (1960), Goddu
(1960) and West (1960), and many others.

Nuclear magnetic resonance was first observed in
1946 but its advantages in the study of organic
structures only began to emerge in 1953 (Meyer et al.).
In twenty years a vast amount of work has been done
and the technique has undergone progressive improve-
ments, The main reasons for this effort are that the
information provided is different from, but comple-
mentary to, that obtained by ultraviolet and infrared
investigations. Nuclear magnetic resonance (n.m.r.)
has added a new dimension to structural studies. In
many problems it can be used easily but the subject has
complications demanding subtlety and expertise.

At the time that Aston carried out his early work on
mass spectra, the notion that a molecular weight could
for example be observed as 346:177 and calculated to



