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INTERMEDIATE STATE (NUCLEAR THEO-
{RY). If it is energetically possible for a system to
jump from an initial state (i) to the final state (f) then
it can do so0 in two ways. In an allowed transition the
system passes from (i) to (f) directly while in forbid-
den transition this is not possible and the transifion
takes place through one or more intermediate states,
to which the transition is not forbidden and which lie
energetioally between (i) and (f). Energy need not be
conserved in transitions to and from intermediate
states, The reason for this is that the lifetime of such
an intermediate state is so short that according to the
uncertainty principle the energy change may be very
large.
See also: Uncertainty principle.

INTERMETALLIC COMPOUNDS. An inter-
metdllic compound is & compound of two or more
metallic elements possessing a characteristic crystal
structure and a specific composition or composition
range intermediate to the primary solid solutions in the
parent metals. I.C’s are normally hard and brittle,
have characteristic melting points (unless decompos-
ing or transforming within the solid) and electrical
conductivities and can sometimes be ferro-or strongly
paramagnetio, where the components may not be.
They can form from solid solutions either isocompos-
itionally (e.g. sigma-phase in Fe-Cr) or by diffusion,
and their practical interest lics more often in these
nucleation and precipitation effeots in alloy matrices
than in their separate existence. Melting point and
heat of formation are useful measures of stability of
1.C’s. Increased compound stability is associated with
more restricted primary solubility.

The principal classes are: (1) Valency compounds,
which tend to adopt atomic proportions in accordance
with normal chemical valency rules. (2) Electron
componunds, the structure and com position of which are
determined by a definite number of free electrons per
atom or more strictly, electrons per unit cell, allowing
for defect lattices. The division between (1) and (2)
is not rigid, there being many borderline and content-
ious cases whioh show characteristics of both. The
main factors governing compound formation are
atomic size factor,electrochemical valency and electron :
atom ratio; each can predominate in varying systems
and characterize the compound iype formed.
Predominance of one factor generally produces the
simpler atructures, of two or more the more complex
ones.

Typical valency compounds are those of many metals
with elements of the IVB, VB, VIB subgroups, such
as;

Type structure Examples
AB, |CaF, or related | Mg,Si, Mg,Sn, Mg,Pb,
(cubic) Cu,Se, PtSn,, CuMgBi
AsB, | La,0, or related | Mg,Sb,, Mg,Bi,, Mg;As,
AB NaCl, Zine MgSe, MgTe, CaSe, PBTe,
blende and MgSb, MgTe
Waurtzite (cubic)
AB NiAs (Hexa- FeSe, CoTe, PtTe, NiSh,
gonal) MnBi.

The NiAs type compounds form an extensive iso-
morphous family of Group: (IV,V, VI, VII, VIII) < -»
(I1IIB, IVB, VB, VIB) metals; they are not necessarily
restrioted to ratios AB, but homogeneity ranges and
stoichiometric changes occur (e.g. Ni,Ge, NiSn,);
such ranges are facilitated by 4/B atom substitution,
as well a8 by the presence of lattice vacanocies. This
versatility is linked with easy axial ratio changes in
the hexagonal lattice and with shear movements, a
principle also applying to other compound groups, as
does that of defect-lattice formation. Phenomena
known in solid solutions, such as stacking faults and
order—disorder transitions are also known in I.C's.
Superlattices in primary solutions are often preparat-
ory stages to I.C. formation on varying temperature
or composition.

Bleciron compounds are exemplified by the follo-
wing:—

Structure and K/4

Ratio Examples

Body-centred cubic CuzAl, Cu,Ga, CuZn, Cu,Si,

3:2 AgMg, AgCd, AgzAl, AuZn,
FoAl, NiAl.
B-Mn type 3:2 CugSi, Ag,Al, CoZn,
Hex. o.p. 3:2 CuyGa, CuyGe, AgZn, Ag,Al,

Ag,Sn

CuyZn,, Cu,Al,, Cu,,Sn,,
Agszna ’ Ag!Inl ’ AIIQI!I‘,
Fe,Znu, Pt,znu) Narupb‘.
CuZn,, C“asn’ Aan,, A&All
AuCd,

v-brass type 21:13

Hex. ¢.p. 7:4

See Index for location of terms not found in this volume



Intermetallic compounds

Internal-combustion engine

Electron compounds occur in numerous other
systems, and subgidiary order-disorder effects are
again known. In calculating the electron: atom ratio,
zero valency has to be assumed for certain atoms,
o.g. for (Fe, Co, Ni) in the y-brass structure (Ekman),
a fundamentally important discovery which evolved
into the finding that a metal can vary its effective
valency, including negative values, within a binary
or ternary system, depending on composition and
compound association. A characteristic of electron
compounds 18 the existence of comsiderable homo-
geneity ranges for the component metals; favourable
size factor is still a condition, limited to about
209% difference.

The Laves phases represent a further highly stable
compound group: Composition AB,, size-factor
slightly larger than for electron-compounds (charaocter-
1stic radius ratio ra: rg = 1.225;1). Three sub-classes,
typified by MgCu,, MgZn, and MgNi, represent
hexagonal and cubic variants to the same structural
theme. Numerous A-B pairs (from diverse portions
of the periodioc table) can assume the Laves structures;
some examples: TiCo,, AgBe,, UFe,, UAl,, ZrW,,
ZrFe,, PbAu,, KBi,, LaAl,, NbFe,, VaMg,, MoBe,,
ZrV,.

Some further 1.C. classes, to which reference must
suffice, are:

(1) The sigma phases amongst transition metalt
(e.g. FeCr, NbRe, many others) of particular interes
in industrial alloys and for isomorphy with g-uranium.

(2) The aluminium-rich transition metal componnds
(e.g. Fe Al,, MnAl,, Co, Al;) mainly associated with
Raynor and structural work by W.H. Taylor and
associates.

(3) Zinti phases AB, (e.g. Na Pb,).

(4) NaTl zype phases.

(6) CuAl, type phases (e.g. NajAu, GegFe, Sn,Co;
CuAl, precipitation-hardens sluminium).

(8) Ths chi phases of a-Mn structure (e.g. in Fe-
Cr-Mo system).

(7) The §-W type phases.

Ternary 1.C’s san occur even where not occurring
in surrounding binary systems. Examples: (Mg-Ag-
Al) Laves phase; (Ni-Cr-Mo) sigma phase. The
isomorphy CogAl,— FeNiAl, instances a theoreti-
cally important further aspect of atomic replace-
abilities.

Reference should be made also to the theoretical
work of Pauling, Hume-Rothery, Raynor, H.Jones,
Bernal (explanation of structural stability and bond-
ing in 1.C.'s in terms of electron transfer and orbital
vacancies), and to Bradley's and Westgren’s classical
X-ray structural investigations.

See also: Hume—-Rothery rule.
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H.J. GorpscHEMIDT
INTERMOLECULAR FORCES. These are gener-
ally of the Van der Waal's type and consequently in-
volve short-range attractive forces, e.g. polarization,
resulting from valence electron motions in the atomic
constituents of the molecule. They are clearly envisaged
from such experiments as the Joule-Thomson effect
and the variation of gaseous viscosity with tem-
perature; they must be taken into account when deal-
ing with the equations of state and with phase equili-
bria. The application of Bose-Einstein statistics indi-
cates that the forces between molecules tend to keep
them together, i.e. to produce condensation at an
equilibriam distance. If the molecules are brought
closer than this, forces of repulsion are brought into
play; these arise from the closed electron shells as well

a8 the repelling nuclei. L. Facos
INTERMOLECULAR POTENTIAL. The work
done in completely isolating two molecules from one

another. Equations to describe the potential as a

function of the distance between the molecules contain

a positive term, representing the repulsion when there

is overlap of the closed electron clouds of the two

molecules and a negative term, representing the at-
traction between (1) the oscillating clouds of electrons
in the two molecules, (2) asymmetric charge distribu-
tions within the molecules and (3) mutually induced
charged within the molecules. Several potentisl energy
equations have been put forward; the main ones are
called (a) the Sutherland model, () the Lennard-

Jones potential {¢) the Buckingham potential (d) the

Buckingham—-Corner potential, and (e) the modified

Buckingham (6-exp) potential. W.M. Joxgs

INTERNAL-COMBUSTION ENGINE. These are
defined as heat engines in which a fuel (oil, gas or
coal) is burnt with air to form the working fluid;
however the indirectly heated gas turbine is usually
classed with them, as although combustion i kept
separate from the working fluid as in a steam engine,
the working fluid has to be compressed in the gaseous
state so that as in internal combustion engines, the
compression process has to be highly efficient if any
net power at all is to be obtamed. Internal combustion
engines can thus be conveniently divided imto (1),
piston type in which the process is periodic with air
and fuel drawn into the eylinder, compressed, burnt,
expanded and exhausted and (2), the continuous gas
turbine such as the open circuit, in which air is
compressed to p,, expanded thermally by combustion
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of fuel at nearly constant pressure, then expanded
adiabatically in the turbme back to atmospherie
pressure, and then exhausted, preferably after cooling
in a heat exchanger to the compressed air before
combustion. -

The simplest .piston engine is the spark ignition
two stroke, in whieh the crankcase acts as a low
compression ratio pump and the exhaust and inlet
valves are both. operated by the uncovering of ports
by the piston. In this case if the exhaunst port opens
before the inlet, it must also close after the inlet port
whereas ideally it should close before. The 4-stroke
spark ignition engine operates on a real cycle ap-
proximating to the Otto cycle; in the first downstroke
the oylinder fills with air and fuel at atmospheric
pressure through a valve —a horizontal line at p,
op the p—v diagram. The upstroke gives adiabatic
compression, then the spark gives ignition and
combustion at nearly constant volume as the crank
passes the top dead centre. Then the adiabatio ex-
pansion gives the working downstroke. Near the
bottom dead centre the exhaust valve opens and the
pressure drops to atmospherio; the subsequent up-
stroke sweeps the exhaust gases from the cylinder
at atmospheric pressure, the other horizontal line on
the p-v diagram making a loop of very small area
joined to the main working cycle at the lowest
pressure point. Apart from a slight finite area of this
loop due to irreversible pressure losses, and the change
in gas composition due to combustion, the cycle does
approximate to a single Ruid retained in the cylinder
and taken round an Otto cycle. The 4-stroke com-
pression ignition cycle approximates to the composite
cycle but again there is8 an additional loop on the
p—v diagram representing drawing in air at atmos-
pheric pressure at the beginning of the cycle and
scavenging at the end. Because there is no fuel in the
air during adiabatic compression a much higher
compression ratio can be used than in the spark
ignition engine and the air temperature at the top of
the adiabatic compression stroke is high enough to
ignite the fuel which is injected as the piston starts
to move down in such a way that combustion takes
place partly at constant volume and partly at constant
pressure. The rest of this stroke provides adiabatic
expansion. The open-cirouit gas turbine could operate
on & cycle which is an approximation to the Ericsson
if the compression were carried out nearly isothermally
at atmospheric temperature by multiple interstage
cooling. Tf the compressed air was then heated nearly
to the working temperature of the turbine bladesin a
heat exchanger, combustion of the fuel and expansion
to atmospheric pressure took place nearly isothermally
by having a large number of partial expansions with
interstage combustion chambers and finally the heat
was given up in the heat exchanger so that the gases
were discharged at nearly atmospheric temperature.

Actual gas turbine cycles are usually much simpler
than the ideal Ericsson avoiding the complications of
a large heat exchanger and mntercoolers and reheaters.

They approximate to the Joule cycie. They also have
cycles of considerably lower efficiency because of
pressure losses in the combustion chamber and ducts
and because the efficiencies of the adiabatic compressors
and turbines are appreciably less than unity.

In any open circuit gas turbine the combustion
products must be greatly diluted with air as the
combustion temperature would otherwise be about
2000°C and the turbine blades will only stand about
600°C. Also the gas velocity thtough them is of the
order of thousands of cm/sec whereas laminar flame
propagation speeds are of the order of cm/sec. Thus
a special type of combustor has been developed in
which primary combustion is stabilized by recircula-
tion and is nearly stoichiometric. The walls of the
combustion chamber are of heat resisting steel cooled
by violent forced convection on the outside to the air
which is added further along for dilution. A combus-
tion efficiency of better than 99 per cent can be achie
ved.

See also: Heat engine. M. W. TrgNG

INTERNAL CONSTITUTION OF SUN AND
STARS. The main difference between the Sun and
other stars is that the Sun is much nearer the Earth
and 18 the only star whose actual shape we can see.
All other stars appear to us as point sources of light,
and their shapes and sizes have been deduced from
their type, apparent brightness, snd distance. The
interior of the stars is meither visible nor directly
accessible to us, and models using theories dealing
with their interior conditions are worked out using
extrapolations of known physical phenomena. Usually
& spherically symmetric distribution 1s assumed, and
the appearance of these models is deduced, then com-
pared with observation. The Sun has a radius of
spproximately 7 X 101°%cm and a mass of 2 X 108g;
the radius having been determined by measurement
of the distance of the Earth from the Sun and of
the angular diameter, and the mass by consideration of
the motion of the planets and their distances.

Taking the mass, radius and luminosity of the
Sun as units, the stars range from 102 to 10~2 in mass,
from 102 to 10-? in radius and from 10% to 10-3 in
luminosity. Thus the Sun is a star of medium type, and
the greater observable detail of its surface has allowed
comyplex theories of its atmospheric structure to be
formulated. The stars retain their form by the balanec-
ing of the inward gravitational forces by forces arising
trom the radiation pressure of outward flowing energy
and from the gas pressure, the fundamental equation
of mechanical equilibrium in stellar interiors being

grad P = pgrad ¢

(where P 18 the total pressure and ¢ the total potential
normally only gravitational). Figures 1 and 2 show
the variation of mass, pressure, density, and tempera-
ture with radius for a typical star.

Stars are initially composed of mostly hydrogen,
which is transformed into helium in the central core.

See Index for location of terms not found in this volume
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This nuclear reaction forms energy which is carried
from the interior high temperature zone to the
surrounding lower temperature zones, in which no
nuclear reactions are taking place, by means of either
radiation or convection. Finslly, at the surface,
radiation takes over entirely the role of energy trans.
port and pours the energy into space.

Onoe again taking the Sun’s mass and radius as
units, the value of the central density of the model
given above is about 100 M/R? g om~3 and the central
temperature is 2 X 10? M/R °K.
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Fig. 1. (Ruadial distance)/(total radius) against
(density)/(total density) and (mass within a sphere
of radius r [(total mass). !
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Fig. 2. (Radwal distance)/(total radius) against
temperature and pressure in units of the cemiral
values.

Two types of double stars are known. Optical
doubles occur when two stars, separated by great
spatial distances, appear to be close when viewed
from the Earth, but true double stars are bound to
each other by gravitational attraction and orbit around
their common centre of gravity. The fisslon theory of
double stars accounts for their presence by the rot-
ational break — up of normal stars, set into fast
rotation by a close passage by another star, passage
through a dust cloud or gravitational contraction.
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INTERNAL CONVERSION. Internal conversion is
the process in which a nuclear transition, which would
otherwise result in y.ray emission, taskes place by
imparting the full available energy to one of the
electrons in its own atom. The ejected conversion
electron then emerges with an energy E, — £, where
E, is the y-ray energy and K is the binding energy
of the partioular electron. The degree of internal
conversion in a particular electron shell is specified
by the internal conversion coefficient ox, r a...
where
numberof K, L, M ... conversion electrons

number of p-rays.

g, L.M...T

This quantity can be caloulated exactly from quantum
electrodynamics and depends only slightly on the
details of nuoclear structure.

The calculations are very involved but have now
been carried out for a large range of elements and
transition energies by Rose, and by Sliv and Band.

As well as being dependent on atomie number, and
energy of the y-ray transition and of course on the
eloctron shell from which the conversion electron
originates, the value of the internal conversion co-
efficient is sensitive to the multipole order and parity
change of the y-ray tradsition.

The internal conversion coefficients are generally
sufficiently different for suocessive multipole orders
to endble the multipolarity to be characterized un-
ambiguously from the measured internal conversion
ooefficient. In many cases'the spin and parity changes
involved in the nuclear fransition can then be deter-
mined. The process therefore has considerable im-
portance in nuclear spectroscopy.

In general if the initial and final nuclear states have
angular momenta J, and J, then the change in
angular momentum 4 J can take on any of the integral
values |J, — J,| < 4T < J, + J,.

The value 4J = |J, — J,|, however, determines the
multipole order of the most intense component in the
radiation field, higher order fields being progressively
weeker by a large factor. In the case where J, = J,,
however, the lowest order multipole is the dipole
(L=1).

The parity selection rules require

Arn = (— 1)7 for electric radiation of multipolarity L

An = (— 1)%+1 for magnetic tadiation of multipolar-
ity L.

Mixtures of magnetic and eleciric radiation of
successive orders are often observed together in
nuolear transitions, the precise ratio being dependent
on nuoclear structure. In these cases two conversion
coefficients are of course involved in determining the
value of 4J.

The most generally useful method of measuring
internal conversion ooefficients is by means of a
B-ray spectrometer. The conversion electron lines
from different electron shells can then be identified
by their energies and their intensity measured. A



Internal friction

Internal frietion

supplementary measurement of the intensity of un-
converted y rays is then made by placing in front of the
source & heavy element radiator in which the y rays
produce Compton and photoelsctrons whose intensity
is measured with the spectrometer.

This method is generally applicable even when there
is a cascade of ¥ rays or branching is present in the
decay scheme. Often the y-ray transition is followed
or preceded by « or f§ particle emission in which case
it is merely necessary to count these particles to
determine the number of p-rays plus the number of
internal conversion processes.

Following internal conversion a vacancy is left m
one of the electron shells of the atom. This is filled by
an electron dropping in from a higher level and a cas-
cade of characteristic X rays and Auger electrons
follows. The yield of X rays is the same as in other
processes which create a vacancy in an electron shell,
e.g. elestron capture or photoelectric absorption, and
is specified for a particular electron shell by the
fluoresence yield wy, ;. 7., where

number of K, L. M ... X rays.
" number of vacancies in the K, I, M shells

WKL, M...

Burhop has shown that the extensive measurements
of this quantity which are available for the K eleotron
shell are in approximate agreement with a formula

<1
1+ ag/Z*”

A relation which follows from the fact that the cal-

culated Auger transition rate is practically independent

of Z whereas the radiative transition rate varies as Z4,
The K series fluorescence yield data is best fitted

with ax = 1-12 X 108, giving wyx = 0.5 at Z = 33.
The data available for the three L shells is much less

complete but follows a similar relation.
See also: Auger effect.
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INTERNAL FRICTION. Friction in general is the
property of a mechanical system to convert work
introduced from outaide irreversibly into heat. The
term internal friction is used generally for mechanioal
systems, when this dissipation of energy ocours not
only on the surface but throughout the system usually
by an atomistic or microscopic process. An internal
dissipation of energy can also be caused by magnetic
fields in ferromagnetic materials or by electric fields in
dielectrics. Although the same or similar dissipative
atomistic processes occur, the term magnetic or

W =

dielectric relaxation is used here. Correspondingly
internal friction, or damping capaelty, is sometimes
called mechanical relaxation, although this term is too
narrow and describes only part of the internal frietion
effects. Acoording to the second principle of thermo-
dynamics it is characteristic of all systems showing
internal friction that entropy will be produced during
& cyclic process.

Internal friotion is mainly observed in systems
undergoing periodic vibrations and its magnitude can
be determined by the decay of free vibrations or of
travelling waves in a test sample.

A measure of internal friction is the quantity
AW|W where AW is the energy loss per cycle and
W the total vibrational energy. If o is the applied

=0
w=t

w
o -4

{a) Stahic Hysteresis (b} Dynamic Hysteresis

external driving forte (stress, pressure, torque) and
e the resulting displacement (strain, volume, angle)

then 4 W is given by the integral / o d e sxtended over

one cycle. Whereas the integral vanishes for anideal .

elastic body it will have a finite value if internal
friction ocours, because ¢ and ¢ are then no longer
single valued functions of each other. This can be
caused in two different ways which are called (a)
static hysteresis and (b) dynamic hysteresis, schemat-
ically shown in the figure.

In a system showing static hysteresis the application
of the external stress will cause a deformation which is
at least partly irreversible and will stay after the
removal of stress. Hence ¢ and e are no longer un-
iquely related to each other (Fig.a). Internal fric-
tion of this kind will generally be independent of the
{requency of vibrations, but will be strongly dependent
on the vibrational amplitude.

In systems showing dynamic hysteresis the ap-
plication of a stress will cause some reversible, but
time dependent, internal rearrangements which allow
the deformation to relax to its final value only after a
finite time, The behaviour of the sample will then also
depend on the rate of change of o and e and the re-
lation between atress and strain will also contain the
first derivatives of a and ¢ with respect to time. Bodies
showinyg this behaviour are called ‘‘anelastic’’ a term
introduced by Zcner. In many cases and especially for
small vibrations the relation between o, ¢, and their
time derivatives is linear, then the internal friction is
independent of the vibrational amplitude, buf it is
easily seen that internal friction caused by such inter-

See Index for location of terms not found in this volume
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nal relaxations will be dependent on the frequency of
vibration. At very high frequencies the internal re-
laxation has no time to take place and hence the
system behaves purely elastically and no energy losses
occur. At very low frequencies the system relaxes
completely during each cycle and again the system
is purely elastic but now its apparent elastic modulus
has decreased to some smaller “‘relaxed” value. At
some intermediate frequency «,, which has about
the value O R 1/t where ¥ is "the relaxation time
or the time 1t takes to aceomplish the internal re-
arrangement, a maximum in internal friction will
occur because there will then be a phase difference ¢
between o and & (Fig. b). Formally this can be de-
scribed for periodic vibrations by a complex elastic
modulus M with 0 = Meand M = M(1 + i g).

Although relaxation processes are the most common
source of dynamic hysteresis another cause is internal
resopance. Here a set of microscopic or atomistic
ncillators exists with & characteristic frequency w,.
If the external frequenoy of excitation approaches
wy, the oscillators are set in resonance and will dissipate
part of their vibrational energy by transferring it
into random lattice wvibrations or heat. Since the
resonance frequency of oscillators of atomie dimensions
is usually very high, dynamic hysteresis of this type
18 mainly observed well above the megacycle range.
The difference between relaxation losses and resonance
losses is that the restoring force for the internal
adjustment is mainly caused by a change of entropy
in the first case and by a change of internal energy
in the second.

In recent times, internal friction has become an
important seientific tool, because it allows a study
of certain atomistic processes which could not be
observed easily in another way. One of the best known
examples is that of an internal relaxation which
occurs by thermally activated diffusion of solute
atoms in a solid. The relaxation 18 caused because
the solute atoms interact with the applied stress and
can jump into certain lattice positions where they
can relieve the external stress. The relaxation time ¢ is
here given by t = 1, exp(— AH/kT) where AH is
the enthalpy of activation for the specific diffusion
process. The maximum of the internal friotion peak
occurs at a frequency @, when @, 7 = 1 or when the
external frequency of exitation is of the order of the
average jump frequency of the atoms in the relaxation
process. Acoordmg to the above equation o, will
increase with incressmg temperature and from a
shift of w,, with temperature it is 1 principle possible
to obtuin the value of AH. However, in more com-
plicated cases when several processes contribute to
mternal friction a whole spectrum of relaxation times
will exist and the interpretation then becomes more
difficalt.

A general phenomenological treatment of relaxation
processes is possible with the methods of the thermo-
dynamies of irreversible processes (Meixner). For each
rystemn there exists for given external conditions a

state of thermal equilibrium where the free energy
G = H — T 8 has its minimum. By variation of some
external parameters the equilibrjum can be chauged
and the approach to a new equilibrium state for
small deviations can be described by a system of
linear differential equations. By solving these with the
appropriate boundary conditions one obtains general
information about the behaviour of the system. The
practical value of this method is, however, limited due
to the fact that the solution often contains parameters
which are unknown and cannot easily be obtained by
measurements.

A more direct mcthod for deseribing relaxation
phenomensa involves the application of statistical
mechanics. Here an atomistic model is used directly
and the change in atomic distribution caused by ex-
ternal forces is studied. The difficulty here is that
often the atomic process is not completely understood
or that the correlation between the measured maoro-
scopic property and the atomistic process can be very
complicated.

There exists a wide variety of different frictional
mechanisms depending on whether internal friction
takes place in gases, liquids, polymers, asmorphous
or crystalline solids. In the dissipation process ex-
ternal energy is finally converted by some coupling
mechanigm into energy of random Iattice vibrations in
solids or into kinetic energy of atoms in gases. A direct
coupling between external applied stress and lattice
vibrations exists for instance in solids known as thermo-
elagtic effect and the heat flow between parts of the
body which are under different stresses during vibra-
tion gives rise to internasl friction. In other cases, the
dissipation occurs by some intermediate processes, For
instance, it may be due to magneto-mechaniocal coupling
(magnetostriction) in ferromagnetxc solids the applied
stress producea a change in internal magnetization
which can give rise to a static hysteresis or which can
cause eddy-ourrents which in turn produce heat by
electric losses. Other mechanisms which can be
sources of internal friction are eclectromechanical
coupling (piezoelectric effect), chemical reactions,
exchange or resonance-processes in molecules, direct
atomic rearrangements in solids by stress induced
ordering or plastic deformation.

By far the most exfensive investigations of internal
friction has been made in crystalline solids and es-
pecially in metals and many of the important effects
have been explained and reviewed by Zener and more
lately by Nowick. The contributions of dislocations
has been reviewed by Liicke and Granato. Much less
understood are the frictional phenomena in polymers
which usually show a complicated viscoelastic be-
haviour {Alfrey, Eirich). In most cases only a phenom-
enological description in terms of macroseopic viscos-
ity coefficients is possible. Internal friotion or sound-
absorption in gases hes been treated by Kneser and
in fluids Markham et al.

See alza: Anelasticity. Damping.
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INTERNALPRESSURE. The derivative (9 U/8 V),
is sometimes called the internal pressure (usually
of a liquid) since the relation

@UBV)y =T@pdT), — »,

sometimes called the thermodynamic equation of state,
can plausibly be thought of in the form internal
pressure = thermal pressure — external pressure. The
concept has been used particularly by J.H.Hilde-
brand and his followers in the study of non-electrolyte
solutions.

See also: Melting (pressure) curve. Van der Waals

tion of state.
equation of 8 M.L.McGLASHAN

INTERNAL STRAINS, EFFECT OF, ON MAG-
NETIC PROPERTIES, The presence of internal
strains in a ferromagnetic makes the material harder
magnetically as well as mechanically. The strains may
usually be removed by some form of heat treatment.

K.J. STANDLEY

INTERNUCLEAR DISTANCE, EQUILIBRIUM.
Symbol r,. The distance apart between two chemically
bound atoms at the equilibrinm position of vibration.
Obtained from diffraction techniques or from the fine-
structure analysis of molecular spectra. Of the order
of Angstrom units (10-*°m).

See also: Atomic radius. Interatomic distance. Ionio

radius. . HE H

INTERNUCLEAR RISTANCE FROM MOLE-
CULAR SPECTRA. The internuclear distance or
equilibrium separation » of a diatomic molecule may
be derived from observations of the rotation spectrum.
The separation of neighbouring lines is given by
hf27cl cm—' and the moment of inertia I is ur3, u
being the reduced mass of the molecule.

A.DALGARKO

INTEROCULAR DISTANCE. Distance between
the rotation centres or the perspective centres of the
eyes (approximately 65 mm).

1 Dictionary of Phyries 1V

INTERPLANAR SPACING (CRYSTALLOGRA-
PHY). The spacing between adjacent members
of any family of crystal planes drawn through the
three-dimensional atomic structure of a crystal. These
spacings, which are of the order of 1A in magnitude,
can be determined very accurately by X-ray diffrac-
tion methods,

G.E. Baocoxw

INTERPOLATION. Interpolation, perhaps the
most, fundamental branch of numerical analysis, has
been aptly described as ‘“‘reading between the lines
of a mathematical table”. It is essentially the process
of replacing a function f(x) whose value is given at
only a finite number of values of the argument «, by a
continuous function F(x) which is equal, or very
nearly equal, to f(z) at those points. This interpolating
function F(x) can then be used to provide estimates
of f(x) at intermediate points.

The simplest example of an interpolating function is
the formula for linear interpolation. Thia effectively
approximates the graph of f(z) between two consecu-
tive arguments z, and z; by the chord joining its end
points, and is given by

Fo=fo+p4fy, O<£<pLl),

where Fp, = F(ag + ph), fo== }{z,), b = z, — %,, and
where Af, is the first forward difference of f,, de-
fined by Afy = f; — fo-

In many published tables the interval A has been
chosen small enough for the error resulting from this
formula to be negligible. Limitations on space,
however, often prohibit the provision of a linearly
interpolable table, and it is then necessary to use a
more complicated formula. In certain cases F (x) might
be chosen to be & rational function, or a series of
trigonometric functions. Usually, however, the ad-
vantages of using a polynomial interpolating function
are overwhelming, and a table user will do so unless
the tablemaker has recommended a superior procedure
which depends on the properties of the particular
function.

Tables with egual intervals of argument. In most
published tables of funoctions of a single variable, the
argument proceeds at equal intervals, and the inter
polation polynomial is then available in several
different forms. The simplest extension of the linear
formula to & polynomial of general degree » is provided
by the Newton forward formula, namely

Fp= {1 +pd +(;)A' +"‘+(z)4"}im

where 4°fy — 4'~1f, — A=}, a“d(f:) —pp—1)

X{p—2)...(p — 8 + 1)/s! This formula can be re-
membered conveniently as the generalization of the
operational relation f, = (1 4 4)f, into the form
fp = (1 -+ 4)%f,.

The Newton formula, although simple in form, and
sometimes useful for interpolating near the end of a

See Index for location of terms not found in this volume
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table, is not usually convement in practice; the co-
efficients 2: have to be evaluated, and forward differ-

enges A*f, are often not immediately available. More
satisfactory formulse can be devised by rearrange-
ment of the Newton formula. The most obvious re-
arrangement is probably the Lagrange formula. If
Af, is replaced by (f, — fo), 4%fy by (fs — 21, + fo)
and so on, the result is the Lagrange interpolation
polynomial, given by

Fo= Lofy + Lifi + -+ + Lyfys

where L, is a polynomial in p of degree . This
formula has the attraction that mo differences are
required, so that if tables of the coefficients L, are
available, an interpolation can be performed quite
readily. It has the serious disadvantage, however,
that there is no clear indication from the formula
as 0 how many terms should be used, whereas the
user of the Newton formula, for example, sees his
terms becoming progressively smaller, and truncates
the series when the next few terms are clearly negli.
gible.

More satisfactory than either of these forms for
most purposes are formulae involving central differ-
ences, defined by

Sfug =t — fo, 0%fo = 82-1fyyp — B2-1f
8-ty = 8%¢f) — 82¢f,,

8o that A*f, = &*fs2. The values of the differences are
often set out in the following pattern, in which any
quantity is obtained by subtracting the upper from
the lower of the two guantities to its left.

Ly fo 5,112(=Afo) ::fo(= j:f—l) B frg(= A”f 1)
= h Sfy2(= 4 6'11(* A:") Pfya(= Af,)
% );. Spai— afy  Hel= 21

T3 Is

Examination of the coefficients ( : ) in the Newton

formula shows that the most effeetive range of
application will be round about p = n/2, since here
the last included terms will be at their smaliest.
This suggests that more convenient forms of the inter-
polation polynomial might be obtained by rearrang-
ing the Newton formula in terms of function values
and central differences, given in a form suitable for
the range 0 < p < 1, and the most eommon is the
Bessel interpolation formula

Fy=1fo + {pd - By(p) 2u6®
+ By(p) 8 + By(p) 248" + -~} fup2,

where 282 fyg = 32 f, + 82¢f,, and where B, (p) is a
polynomial in p of degree ». The odd differences in this
formula can each be replaced by even differences,

nsmg 028~ 1fye = 625f, — 82¢f;, and this gives rise to
the Everett interpolation formula, namely

Fu, = {(1 — p) + By(p) 0* + Bo(p) * + ---}fo
+ {9 + Fy(p) 8 + Fy(p) 8* + -}y,

where E (p) and F,(p) are polynomials in p of
degree (n + 1), To use either of these formulae con-
veniently, tables of the coefficients B,(p), or of
E,(p) and F, (p) must be available. Such tables, and
many other useful coefficients and formulase, are
given in “Interpolation and Allied Tables”, henceforth
referred to as I.A.T.

Other arrangements, including some relevant to the
range — 3 < p< 4, are possible, and these are
also given in L.A.T. Generally, however, the Bessel
and Everett formulae are the most useful central
difference forms, particularly the latter because
it does not need odd differences.

The power of the central difference formulae can
be greatly inereased by the use of what is known as
throw-back. This is a device which incorporates some
of the fourth difference term with the second, and
arose from the observation that {B,(p) -+ O By(p)} can
be made small throughout the range 0 p < 1 if
the constant C is suitably chosen. If the table-maker
provides, with the funotion values, & column of
‘‘modified” second differences, defined by 83, = #*
— (' &%, the user can interpolate with the formula

Fp = {1 — p) + Ea(@)0%} fo + {p + Fa(p) 6%lh1,

provided the fourth differences do not exceed 1000
units in the last figure, with no more labour than would
be required to use the unmodified formula in a table
with fourth differenees less than 20, and with negligible
loss of accuracy. Powerful throw-back formulae used
in published tables are given, with the mnecessary
coefficients, in T.A.T.

The original interpolation polynomisl of degree =
which appears in the various forms of Newton,
Lagrange, Beagel and Everett, is that polynomial
which ooincides with the function values at (n + 1)
succesgive tabular arguments. When the throw-back
device has been used, however, this coincidence is no
longer satisfied, and & new basis for polynomial inter-
polation must be established. This may be found in
the solution of the problem of opiimum polynomial
interpolation; that is, the problem of finding the
polynomial of lowest degree which represents f(x)
in a given tabular interval to a specified acouracy.
If {(z, + pk) it expanded in a series of CAebysher
polynomials and truncated, & polynomial is obtained
whose deviation from the best possible is negligible
for practical purposes. The most suitable formula
for the usual range 0 < p lis

Fp=fo+ oy T1(&) + aqTolds) + -+ + 0, T,(5,),

where §, — (1 + cos ®/2s) p — cos /25 and 7', (£)
= cos (¢ 00s~1 §), so that 7',(§,) = 0 when p = 0.
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The rearrangement of this in the form
Fp=fo+eyp-+cep® + - + ¢, "

gives a convenient and powerful interpolation formula
If the table-maker gives the coefficients ¢, alongside
the function values, the user ean interpolate quickly
without having to use tables of interpolation co-
efficients, The only disadvantage of this formula
compared with one using modified differences is that
the table may occupy more space; this space may be
recovered, however, by increasing the argument inter-
val, which often increases the degree of the interpolat-
ing polynomial only slightly.

Many formulae, including those involving throw-
backs, osn be obiained by rearrangement of such
Chebyshev-type expansions. One of them, of similar
power to the Everett formula which uses modified
second and fourth differences, is

Fp =gl 4+ {1l —g®)(dy+ 2t d )Mo
+ p{l 4+ (1 — 2%) (d, -+ PPd My

where g = 1 — pand where d, and d, f arc coctficients
given in the table alongside the function values. This
seems preferable to the sumilar Everett formula smince
it can, if necessary, be evaluated much more easily
without using tables of coefficients; it is, however,
more troublesome to the user than the straight-
forward economized polynomials given above.

Nevertheless, tables which provide modified differ-
enoes are so common that the formulas involving them
will continue to be used.

Another interpolation aid sometimes provided is a
set of reduced deri atives. Alongmde f are provided

ki, 37 R, 37 h3f’ andsoon, where’ is the argument

interval, and where primes denote differentiation with
respect to the argwment. These quantities are the
coefficients of the powers of p in the Taylor expansion
of }(z, + ph) about p = 0, and are used in the same
way as the coefficienta ¢, of the economized polynomial.

Inverse interpolation. The problem of finding =,
given a value of f(x). frequently arises; it 13 easily
solved using any of the preoeding interpolation form-
ulae by isolating the term linear in p and replacing
the estimate F, by the known },. For example the
Everett formula using modified second differences is
used in the form

1

p= '; fo Up fo — Ea(p)0%afo — Fa() ‘):nz).fl}'
1f the terms in A%, are neglected, this gives an approx-
imate value of p which is used to calculate E,(p)
and Fy(p). With these inserted in the formula, a
better approximation to p is evaluated, which in turn
is used to give better values of E,(p) and Fy(p). Such
an iterative procedure rapidly produoes the required
p, and hence = == z, + ph.

Punctions of two variables. The usual procedure for
interpolating a function of two variables is to inter-

polate first in one variable, at tabular values of the
other which enclose the given point. A further single.
interpolation then produces the desired result, How-
ever, existing double-entry tables invariably provide
adequate instructions for the user, and these should
be followed.

Unequal intervals. There somesimes arises the
problem of interpolating m a funetion given at un-
equally spaced values of the argument, This problem
oould be tackled by using the appropriate form of the
Lagrange formula, but since the arguments are un-
equally spaced the coefficients will not often be found
in any table and must bo computed. Because of this,
and of the other disadvantage of the Lagrange form-
ula already noted, this method is usually rejected
in favour either of & divided-difference formula, or
of iterative linear interpolation.

In the former case, a difference table is constructed
with the arguments z, in &scending order as in the
equal-interval case, but with the following adjustments
A convenient ‘interval’ %, approximately equal to the
total range divided by the number of intervals, is
chosen. The differences, known as “adjusted divided
differences’’ are defined as fallows,

Ofye = = i%(fl = fohs
894, = ;:ihz—! (0fv2 — of 1},
6% F1f, = ;(;2-4-7}1% (®nf, — 27},

This definition is sueh that the differences reduce to
ordinary central differences when the argument inter-
val is & conatant, ogual to h. The interpolation poly-
nomisl can again be written in several different forms.
Probably the wost convenient here is that of Gauss,
namely

F=he WD
—x ) (x - -
(z r_y) (x ';:l)ff ), (f _fl). Y +...}f°
% — (z—z )@ 2) (& —x)
+{ h ¢6+ 1 k3.3!0 L 6a+-.-}j_—|\r.

The method of iterative linear interpolation is a
way of caleulating values of the interpolation polynom-
jala of successive degrees which provides an indication
of the stage at which enough terms have been used. 1f
fa.bc,. ok I8 the value at z of the interpolation
polynominl which takes the values fu., f,.... f&
al 2., ®p..-,2p respectively, then fa,b.., 1.k
= (g — &) fa,b,e,... 1~ (Tg— %) fo.c,...5 B}/{zxk — %a).

See Index for location of terms not found in this volume



Intersected point, topographical

Intersection of metallic twins

The usual arrangement of the numbers is as follows

% %—x fo

fo,i
z zm—=z f p fo1,2
1,2
5 wy—z o g 2.3 fo,1,2,3

Ty x3g—x fy
where, for example,
forze = {{xg — ) fo,1 — (w0 — 2) fr,8}/(@s — o).

The interpolation 1s assumed to be correct when
successive values in the same column have a negligible
difference.

This method is simpler to use than divided differ-
ences for an isolated interpolation, but since it requires
a new table for each value of z it compares unfavour-
ably when several interpolates are needed.

Interpolation for a high-speed computer. The preced-
ing methods have been discussed from the point of
view of a desk-machine user. If a high speed electronic
computer is available, the use of auxiliary tables of
nterpolation coefficients, and indeed of finite differ-
ences themselves, is inconvenient. Briefly, the inter-
polation aids which seem best suited to such a com-
puter are economized polynomials, which may be of
high degree to cover a large range, and iterative
linear interpolation where an orthodox table must be
used. Non-polynomial interpolating functions may,
however, often be used with advantage; it is also a
common practice to compute an algebraic function
afresh for each argument.

A full discussion of the error comitted in using the
basic interpolation formulae will be found in, for
instance, Buckingham’s ““Numerical Methods’.

See also: Finite differences. Integration, numerical.
Mathematical tables. Numerical analysis.
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INTERSECTED POINT, TOPOGRAPHICAL. A
point whereof the position is fixed is by theodolite
intersections from two or more other points, but which
itself is not ocoupied by the theodolite.

G. BOMFORD

INTERSECTION OF METALLIC TWINS. Me-
chanically induced twin lamellae in certain metals
are sometimes observed to run through each other.
Such intersections can be classified into perfect and
imperfect intersections. The figure illustrates a perfect
intersection. Here the crossing twin 4 and the crossed
twin B are each in twinned orientation relative to the
parent crystal, while the secondary twin € is twinned
relative to the lattice in B. For a perfect intersection
to take place, it is necessary that:

(1) The traces of A and of C in the twinning (lam-
ella) plane of B must be parallel to each other.

{2) The direction and magnitude of shear must be
the same in 4 and C,

Condition (1) represents the necessity for 4 and ¢
to join up accurately over large areas of 4, and con-
dition (2) represents the necessity for the strains,
created by the twinning shears of 4 and C, to match.

Geomeiry of twin intersections:
A, B, C — perfect intersection
D, B — imperfect intersection

When B, as is usual, is a twin of the “first kind”’
{i.e. when the twinning plane of B has rational Miller
indices), these two laws reduce to the single require<
ment that the shear directions in 4 and C should be
parallel to each other and therefore to their line of
intersection. This line is indicated by the arrow in the
figure. Perfect intersections of this kind have been
observed in iron and mn uranium.

When B is a twin of the “‘second kind” (the twin-
ning plane does not have rational Miller indices) the
analysis is more complex, and perfect intersections are
not normally expected. One type of perfect imter-
section for this case has however been recorded in
uranium.

Imperfect intersections sometimes arise when one
or both of the above requirements fail to be observed
The appearance of such intersections is normally
distinguishable from the pattern indieated in the
figure on the left, and resembles more nearly the
“pinched-off”” configuration shown at the right of
the figure (lamella D). Imperfeet intersections have
been observed in zine, tin, titanium ‘and uranium.
When twin lamellae are very thin, it is difficult to
distinguish an intersection from a situation where the
mechanical impulse of the impinging twin on an



