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Preface

Recent years have brought a revival of work on string theory, which
has been a source of fascination since its origins nearly twenty years ago.
There seems to be a widely perceived need for a systematic, pedagogi-
cal exposition of the present state of knowledge about string theory. We
hope that this book will help to meet this need. To give a comprehensive
account of such a vast topic as string theory would scarcely be possible,
even in two volumes with the length to which these have grown. Indeed,
we have had to omit many important subjects, while treating others only
sketchily. String field theory is omitted entirely (though the subject of
chapter 11 is closely related to light-cone string field theory). Conformal
field theory is not developed systematically, though much of the back-
ground material needed to understand recent papers on this subject is
presented in chapter 3 and elsewhere. Our discussion of string propaga-
tion in background fields is limited to the bosonic theory, and multiloop
diagrams are discussed only in very general and elementary terms. The
omissions reflect a combination of human frailty and an attempt to keep
the combined length of the two volumes from creeping too much over 1000
pages.

We hope that these two volumes will be useful for a wide range of read-
ers, ranging from those who are motivated mainly by curiosity to those
who actually wish to do research on string theory. The first volume. which
requires as background only a moderate knowledge of particle physics and
quantum field theory, gives a detailed introduction to the basic ideas of
string theory. This volume is intended to be self-contained. The second
volume delves into a number of more advanced topics, including a study
of one-loop amplitudes, the low-energy effective field theory, and anoma-
lies. There is also a substantial amount of mathematical background on
differential and algebraic geometry, as well as their possible application
to phenomenology.

We feel that the the two volumes should be suitable for use as textbooks
in an advanced graduate-level course. The amount of material is probably
more than can be covered in a one-year course. This should provide the
instructor the luxury of emphasizing those topics he or she finds especially



Preface

important while omitting others. Despite our best efforts, it is inevitable
that a substantial number of misprints, notational inconsistencies and
other errors have survived. We will be grateful if they are brought to our
attention so that we can correct them in future editions.

We have benefitted greatly from the assistance of several people whom
we are pleased to be able to acknowledge here. Kyle Gary worked with
skill and diligence in typing substantial portions of the manuscript, as well
as figuring out how to implement the formatting requirements of Cam-
bridge University Press in TEX, the type-setting system that we have used.
Marc Goroff brought his wealth of knowledge about computing systems to
help solve a myriad of problems that arose in the course of this work. We
also received help with computing systems from Paul Kyberd and Vadim
Kaplunovsky. Patricia Moyle Schwarz put together the index and made
useful comments on the manuscript. Harvey Newman set up communica-
tions links that enabled us to transfer files between Pasadena, Princeton
and London. Judith Wallrich helped to compile the bibliography. Useful
criticisms and comments on the text were offered by Cedomir Crnkovié,
Chiara Nappi, Ryan Rohm and Larry Romans.

We would like to dedicate this book to our parents.

1986 Michael B. Green
John H. Schwarz
Edward Witten
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1. Introduction

1.1 The Early Days of Dual Models

In 1900, in the course of trying to fit to experimental data, Planck wrote
down his celebrated formula for black body radiation. It does not usually
happen in physics that an experimental curve is directly related to the
fundamentals of a theory; normally they are related by a more or less
intricate chain of calculations. But black body radiation was a lucky
exception to this rule. In fitting to experimental curves, Planck wrote
down a formula that directly led, as we all know, to the concept of the
quantum.

In the 1960s, one of the mysteries in strong interaction physics was
the enormous proliferation of strongly interacting particles or hadrons.
Hadronic resonances seemed to exist with rather high spin, the mass
squared of the lightest particle of spin J being roughly m? = J/o/, where
o ~ 1(GeV)™? is a constant that became known as the Regge slope.
Such behavior was tested up to about J = 11/2, and it seemed conceiv-
able that it might continue indefinitely. One reason that the proliferation
of strongly interacting particles was surprising was that the behavior of
the weak and electromagnetic interactions was quite different; there are,
comparatively speaking, just a few low mass particles known that do not
have strong interactions.

The resonances were so numerous that it was not plausible that they
were all fundamental. In any case consistent theories of fundamental
particles of high spin were not known to exist. Consistent (renormaliz-
able} quantum field theories seemed to be limited to spins zero, one-half,
and one, the known examples being abelian gauge theories and scalar
and Yukawa theories. That limitation on the possible spins in consis-
tent quantum field theory still seems valid today, though now we would
include Yang-Mills theory in the list of consistent theories for spin one.
The apparent limitation of consistent quantum field theories to low spin
was compatible with the existence of a successful field-theory description
of the electromagnetic interactions, in which the basic particles have spin
one half and spin one, and was compatible at least with attempts (which

1



2 1. Introduction

P, Py
Py Py
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Figure 1.1. An elastic scattering process with incoming particles with momenta p, , p,
and outgoing particles with momenta —py, —p4 (we adopt the convention that the
labels refer to incoming momenta). Both s- and ¢-channel diagrams are indicated. In
field theory the amplitude is constructed as a sum of s-channel and ¢-channel diagrams.

in time succeeded) at field theories of the weak interactions. But agsimilar
approach to strong interactions did not appear promising.

A related puzzle about strong interactions concerned the high-energy
behavior of the scattering amplitudes. Consider an elastic scattering pro-
cess with incoming spinless particles of momenta p;, p2 and outgoing parti-
cles of momenta p3, ps. We adopt a metric with signature {— + +...+},
so that the mass squared of a particle is m2 = —p®. The conventional
Mandelstam variables are defined as

s=—=(p+p3)’, t=—(p2+p), u=—(m+p)’ (LLI1)

They obey the one identity s+t+u =), m?. We assume that the external
states in fig. 1.1 are particles such as pions that transform in the adjoint
representation of the flavor group, which for three flavors is SU(3) or
U(3). The flavor quantum numbers of the ith external meson are specified
by picking a flavor matrix A;. We will discuss a term in the scattering
amplitude proportional to the group-theory factor tr(A;A2A3)y). Since
this group-theory factor is invariant under the cyclic permutation 1234 —
2341, Bose statistics require that the corresponding amplitude should be
cyclically symmetric under p1p2p3ps — p2pspap1. In terms of Mandelstam
variables, this permutation of momenta amounts to s « ¢, which is the
symmetry we will require for the amplitude A(s,?).

In quantum field theory, the leading nontrivial contributions to the
scattering amplitude come from the tree diagrams of fig. 1.1. The basic
reason that it is difficult to construct sensible quantum field theories of
particles of high spin is that tree diagrams with the exchange of high spin
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particles have bad high-energy behavior. Asymptotically, they exceed
unitarity bounds. Consider, for instance, the t-channel diagram. Denote
the external particles in fig. 1.1 as ¢ and the exchanged particleas ¢. If &
has spin zero fig. 1.1 may involve a simple ¢* ¢o interaction; the amplitude
is then simply A(s,t) = —g?/(t — M?) with g being the coupling constant
and M the mass of the o particle. This amplitude vanishes for t — oo,
this being one aspect of the excellent high-energy behavior of the cubic
scalar interaction we are discussing.

Figure 1.2. A one-loop diagram can be made by sewing together two tree diagrams,
as indicated here.

Suppose instead that the sigma particle is a spin J field oy, p,..,. For
such a field, the cubic coupling in fig. 1.1 must then be something like

$*0p,0py ... Op, ¢ - o*#2-#3 In fig. 1.1 there are now 2J factors of
momenta. If the external particles are scalars then the contribution to
the scattering amplitude of the exchange in the ¢ channel of this spin J
particle has the form

2 J
9(=9)
AJ(S,t) = —-T_-—m (1.1.2)
at high energies. The behavior of this amplitude is therefore worse and
worse (more and more divergent) for larger and larger J. An objective
criterion for what is a ‘bad’ amplitude is to ask what will happen when we
sew together amplitudes like that of (1.1.2) to make loops, as in fig. 1.2.

* This is the behavior of the tree-level scattering amplitude in the asymptotic
region of large s, fixed ¢. The s’ behavior is easily found by contracting the
momenta that appear in the interaction vertices in fig. 1.1. The exact formula
(for moderate 3) is more complicated, involving a Legendre polynomial P;(cos ;)
(0, is the center-of-mass scattering angle in the f channel). We prefer to write only
the high-energy behavior, which is transparent and adequate for our purposes.
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The one-loop integrand in n dimensions is roughly [ d"pA?/(p?)?, with
A being the tree amplitude of (1.1.2). In four dimensions such a loop
diagram is convergent for J < 1, has a potentially renormalizable loga-
rithmic divergence for J = 1, and has a nasty unrenormalizable divergence
for J > 1.

There are strongly interacting particles of various mass and spin that
might be exchanged in the ¢ channel, so we must think of a t-channel
amplitude of the general form

A1) = - Y B (1.L3)
J

2

where now we allow for the possibility that the couplings g; and masses
M of the exchanged particles may depend on J (and perhaps on other
quantum numbers that we do not indicate). Of course, one might take
the point of view that the strong interactions are so strong that a Born-
like approximation as in (1.1.3) is hopeless. But let us be optimists and
see how well we can do. What is the high-energy behavior of the sum in
(1.1.3)7 If this is a finite sum, the high-energy behavior is simply deter-
mined by the hadron of largest J that contributes in (1.1.3). This is very
different from what is observed in nature; the actual high-energy behavior
of hadron scattering amplitudes is much softer than the behavior of any
individual term in (1.1.3). (In fact, Regge asymptotic behavior of the
type described in §1.1.2. is a reasonable approximation to experiment.)
On the other hand, it is not reasonable to think of (1.1.3) as a finite sum.
There certainly does not seem to be any such thing as a ‘hadron of highest
spin’. With (1.1.3) viewed as an infinite sum, it is certainly conceivable
that the whole sum might have a high-energy behavior better than the
behavior of any individual term in the series, just as the function e~ is
smaller for z — co than any individual term in its power series expansion
e = §amo(—2)"/n!

Regarding (1.1.3) as an infinite sum has another consequence. In a phys-
ical process such as the elastic scattering of pions, we expect the t-channel
poles that appear in (1.1.3), but we also expect s-channel resonances or
in other words poles in the amplitude at certain values of s. In fact, the
cyclic symmetry that we discussed earlier requires that the coefficient of
tr(A1A2A3Ay4) in the scattering amplitude have both s- and ¢-channel poles
or neither. A finite sum (1.1.3) defines an amplitude A(s,t) that has no
s-channel poles; for fixed ¢, (1.1.3) manifestly defines an entire function
of s, as long as there are only a finite number of terms in the sum. It
is precisely for this reason that the perturbative expansion of ordinary
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quantum field theories satisfies crossing symmetry by including both s-
and t-channel diagrams. In the case of an infinite sum, things are differ-
ent. Though each term in (1.1.3) is an entire function of s, the infinite
sum might diverge at some finite values of s, giving poles in the s channel.
Thus, once we accept the fact that (1.1.3) is essentially an infinite series,
it is no longer obvious that s-channel terms must be included separately;
they may be already implicit in (1.1.3).

Similar remarks could be made if we took as our starting point resonant
scattering or in other words contributions to scattering amplitudes with
s-channel poles. We would then construct an amplitude analogous to
(1.1.3) but with s-channel poles rather than t-channel poles:

' _ 92(_t)J
Al(s,t) = -XJ:-SJ_—]W? (1.1.4)

Symmetry under cyclic permutation of the external momenta requires that
the same masses and couplings appear in (1.1.4) as in (1.1.3). Studying
(1.1.4) we would again observe that a finite sum of the type in (1.1.4)
inevitably has a high-energy behavior much worse than the observed be-
havior of hadrons, but this is not inevitably true for an infinite sum of
this type. Furthermore, a finite sum (1.1.4) would certainly define (for
fixed s) an entire function of ¢, but this might not be true for an infinite
sum.

Pursuing these thoughts still further, one might imagine that if the
couplings g; and masses M are cunningly chosen, then the s-channel
and t-channel amplitudes A(s,t) and A'(s,t) might be equal. In this
case, the entire amplitude could be written as a sum over only s-channel
poles, as in (1.1.4), or as a sum over only t-channel poles, as in (1.1.3).
This would be a sharp contrast to the field-theory situation in which one
ordinarily needs a sum over both s- and t-channel poles.

Equality of the s- and t-channel amplitudes was advocated around 1968
by Dolen, Horn and Schmid, who argued, on the basis of an approximate
evaluation of (1.1.3) and (1.1.4) (carried out with the help of experimen-
tal data), that the equality A(s,t) = A'(s,t) was indeed approximately
obeyed for small values of s and . This was called the ‘duality’ hypothesis,
the hypothesis that s- and t-channel diagrams give alternative or ‘dual’ de-
scriptions of the same physics. Is duality an approximation or a principle?
At first sight it looks well nigh impossible to choose the resonance masses
and couplings to obey exactly the duality relation A(s,t) = A'(s,t). How-
ever, a way of doing this was found by Veneziano in 1968. Veneziano
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simply postulated a formula for the scattering amplitude, namely

AGs 1) = T (a)

T(—a(s) —a®) - (1.1.5)
Here I' is the Euler gamma function,
(> <]
I'(u) = /t""e"‘dt, (1.1.6)
0

and a(s) is the ‘Regge trajectory’, for which Veneziano postulated the
linear form a(s) = a(0) + o's; @' and a(0) are known in Regge-pole
theory as the Regge slope and the intercept, respectively.

1.1.1 The Veneziano Amplitude and Duality

It is not evident at first sight that the Veneziano amplitude obeys duality,
but we will now show that it does. First of all, we need to know something
about the gamma function. This function obeys the identity

T(u+ 1) = ul'(u). ' (1.1.7)

This is proved, starting from (1.1.6), by simple integration by parts:

o0 d o
Fu+1)=~ t"ae“dt =u / t*le~tdt = ul(u). (1.1.8)
0 0

It is evident from (116) that T(1) = 1. If u is a positive integer, then
repeated use of (1.1.7) implies that

T(u) = (u— ). (1.1.9)

The integral representation of the I' function in (1.1.6) is valid as long as
the real part of u is positive, and shows that I' has no singularities in this
part of the complex u plane. The recursion relation (1.1.7) can be used
to extend the domain of definition of T and determine its singularities.
Writing (1.1.7) in the form

I(u) = F(—"u'tl—) (1.1.10)

gives a definition of the gamma function for Reu > —1, since the right
hand side of (1.1.10) has already been defined in that region. Equation
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(1.1.10) also shows that I has a simple pole at u = 0 with residue 1. This
process can be generalized; repeated use of ‘(1.1.7) gives

_ I'(u + n)
[(u) = u(u+1)...(u+n-1)

for any positive integer n. The right-hand side of (1.1.11) is uniquely de-
fined by the integral representation (1.1.6) as long as Re u > —n, so we ob-
tain a unique analytic continuation of the gamma function in this region.
Since n is arbitrary, the gamma function actually has a unique analytic
continuation throughout the whole complex u plane. From (1.1.11) we can
see that the only singularities of I are simple poles at u = 0,—-1,-2,....
The behavior for 4 near —n (n a non-negative integer) can be read off
from (1.1.11) and is

(1.1.11)

1 (-1)"
Now we wish to discuss the analytic behavior of the function
_ T(w)r()
B(u,v) = T(at0)’ (1.1.13)

which is called the Euler beta function. It is related to the Veneziano
amplitude by A(s,t) = B(—afs), —a(t)). Evidently, (1.1.13) has a simple
pole when u or v is a non-positive integer. There are no double poles in
(1.1.13), since while I'(u) and I'(v) may simultaneously have poles, when
this occurs the denominator in (1.1.13) has a pole at the same time. This is
an important point, because simple poles are the only singularities allowed
in tree amplitudes in relativistic quantum mechanics. The behavior of
B(u,v) for v ~ —n (n being a non-negative integer) is evidently

By~ —— 1) w=2)...(u=n) (1.1.14)

, are— e . 1.
Here we are using (1.1.7) to write the residue of the pole at v = —n as a
polynomial in u; this is again an important step since the residue of a pole
in relativistic quantum mechanics must be a polynomial. As a function of
v for fixed u, B(u,v) has only the singularities indicated in (1.1.14). We
claim now that (for Re u > 0 so that the following infinite sum converges)
we can write
(=]

B(u,v) = Zo " -:—n (—nl!)" (v—1)(u—2)...(u—n). (1.1.15)

The idea here is that the sum on the right of (1.1.15) reproduces all of the
singularities of the beta function, so could differ from it only by an entire



