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Chapter 1

Crystal Properties and Growth
of Semiconductors

OBJECTIVES

1. Describe what a semiconductor is

2. Perform simple calculations about crystals

3. Understand what is involved in bulk Czochralski and thin-film epitaxial
crystal growth

4. Learn about crystal defects

In studying solid state electronic devices we are interested primarily in the
electrical behavior of solids. However, we shall see in later chapters that the
transport of charge through a metal or a semiconductor depends not only on
the properties of the electron but also on the arrangement of atoms in the
solid. In the first chapter we shall discuss some of the physical properties of
semiconductors compared with other solids, the atomic arrangements of var-
ious materials, and some methods of growing semiconductor crystals. Topics
such as crystal structure and crystal growth technology are often the subjects
of books rather than introductory chapters; thus we shall consider only a few
of the more important and fundamental ideas that form the basis for under-
standing electronic properties of semiconductors and device fabrication.

Semiconductors are a group of materials having electrical conductivities in- 1.1
termediate between metals and insulators. It is significant that the conduc- SEMICONDUCTOR
tivity of these materials can be varied over orders of magnitude by changes MATERIALS
in temperature, optical excitation, and impurity content. This variability of
electrical properties makes the semiconductor materials natural choices for
electronic device investigations.
Semiconductor materials are found in column IV and neighboring
columns of the periodic table (Table 1-1). The column IV semiconductors, sil-
icon and germanium, are called elemental semiconductors because they are
composed of single species of atoms. In addition to the elemental materials,
compounds of column III-and column V atoms, as well as certain combina-
tions from II and VI, and from IV, make up the compound semiconductors.
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2 Chapter 1

AsTable 1-1 indicates, there are numerous semiconductor materials. As we
shall see, the wide variety of electronic and optical properties of these semicon-
ductors provides the device engineer with great flexibility in the design of elec-
tronic and optoelectronic functions. The elemental semiconductor Ge was widely

- used in the early days of semiconductor development for transistors and diodes.
Silicon is now used for the majority of rectifiers, transistors, and integrated cir-
cuits. However, the compounds are widely used in high-speed devices and devices
requiring the emission or absorption of light. The two-element (binary) I1I-V
compounds such as GaN, GaP, and GaAs are common in light-emitting diodes
(LEDs). As discussed in Section 1.2.4, three-element (fernary) compounds such
as GaAsP and four-element (quaternary) compounds such as InGaAsP can be
grown to provide added flexibility in choosing materials properties.

Fluorescent materials such as those used in television screens usually
are II-VI compound semiconductors such as ZnS. Light detectors are com-
monly made with InSb, CdSe, or other compounds such as PbTe and HgCdTe.
Si and Ge are also widely used as infrared and nuclear radiation detectors.
An important microwave device, the Gunn diode, is usually made of GaAs
or InP. Semiconductor lasers are made using GaAs, AlGaAs, and other
ternary and quaternary compounds.

One of the most important characteristics of a semiconductor, which
distinguishes it from metals and insulators, is its energy band gap. This prop-
erty, which we will discuss in detail in Chapter 3, determines among other
things the wavelengths of light that can be absorbed or emitted by the semi-
conductor. For example, the band gap of GaAs is about 1.43 electron volts
(eV), which corresponds to light wavelengths in the near infrared. In contrast,

Table 1-1. Common semiconductor materials: {a) the portion of the periodic table where
semiconduclors occur; (b) elemental and compound semiconductors.

{a) [} 1] v v vi
B C N
. Al Si P S
Zn Ga Ge As Se
Cd In Sb Te
(b) . Binary lIFV Binary I-VI
Elemental IV compounds compounds compounds
Si SiC AlP ZnS
Ge - SiGe AlAs ZnSe
AlSb ZInTe
GaN CdS
GaP CdSe
GaAs CdTe
GaSh
InP
InAs
InSb
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Crystal Properties and Growth of Semiconductors

GaP has a band gap of about 2.3 eV, corresponding to wavelengths in the
green portion of the spectrum.! The band gap E, for various semiconductor
materials is listed along with other properties in Appendix II1. As a result of
the wide variety of semiconductor band gaps, light-emitting diodes and lasers
can be constructed with wavelengths over a broad range of the infrared and
visible portions of the spectrum.

The electronic and optical properties of semiconductor materials are
strongly affected by impurities, which may be added in precisely controlled
amounts. Such impurities are used to vary the conductivities of semicon-
ductors over wide ranges and even to alter the nature of the conduction
processes from conduction by negative charge carriers to positive charge car-
riers. For example, an impurity concentration of one part per million can
change a sample of Si from a poor conductor to a good conductor of electric
current. This process of controlled addition of impurities, called doping, will
be discussed in detail in subsequent chapters.

To investigate these useful properties of semiconductors, it is necessary to
understand the atomic arrangements in the materials. Obviously, if slight alter-
ations in purity of the original material can produce such dramatic changes in
electrical properties, then the nature and specific arrangement of atoms in each
semiconductor must be of critical importance. Therefore, we begin our study of
semiconductors with a brief introduction to crystal structure.

In this section we discuss the arrangements of atoms in various solids. We
shall distinguish between single crystals and other forms of materials and
then investigate the periodicity of crystal lattices. Certain important crystal-
lographic terms will be defined and illustrated in reference to crystals hav-
ing a basic cubic structure. These definitions will allow us to refer to certain
planes and directions within a lattice. Finaily, we shall investigate the dia-
mond lattice; this structure, with some variations, is typical of most of the
semiconductor materials used in electronic devices.

1.2.1 Periodic Structures

A crystalline solid is distinguished by the fact that the atoms making up the
crystal are arranged in a periodic fashion. That is, there is some basic arrange-
ment of atoms that is repeated throughout the entire solid. Thus the crystal ap-
pears exactly the same at one point as it does at a series of other equivalent
points, once the basic periodicity is discovered. However, not all solids are
crystals (Fig. 1-1); some have no periodic structure at all (amorphous solids),
and others are composed of many small regions of single-crystal material
(polycrystalline solids). The high-resolution micrograph shown in Fig. 6-33 il-
lustrates the periodic array of atoms in the single-crystal silicon of a transis-
tor channel compared with the amorphous SiO, (glass) of the oxide layer.

'The conversion between the energy E of a photon of light (eV) and its wavelength Apm)is A = 1.24/E.
For GaAs, » = 1.24/1.43 = 0.87 wm.

1.2
CRYSTAL LATTICES

fi ool IR T D Ry PR 1 g sy P M D s 4



