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PREFACE

Electrical engineering is a discipline driven by inventions and technological
breakthroughs. To mention one: 20 years ago, engineers barely knew how to
produce an IC chip: now some chips have one million devices; it is expected
that with foreseeable developments in silicon technology during the next
decade chips will have 10° devices. Also the ubiquitous presence of the
computer terminal reminds us of the enormous impact of computers on
engineering design. Clearly such tremendous changes would have considerable
influence on engineering education.

In teaching a course on introductory electrical circuits,, the traditional
approach has been to teach exclusively linear time-invariant passive RLC
circuits. Admittedly they constitute a good vehicle to learn the dynamics of
such simple circuits. Clearly such an approach is obsolete. _

It is clear that circuit theory is one of the basic disciplines of electrical
engineering; a well designed circuit theory course should cover the basic
concepts and the basic results used in circuit design. It should serve as a
foundation course to be followed by courses in various fields of electrical
engineering, e.g., communication and signal processing, electronic devices and
circuits, control and power systems, microwaves and optoelectronics, etc. . . .
The concept of device modeling and its applications to currently used devices '
are crucial in a course on linear and nonlinear circuits: many examples of
device modeling are given in the text. Furthermore, the course should be
designed so that the graduate from such a curriculum knows how to approach
the devices and circuits yet to be invented but that he or she will encounter,
- say, 10 to 15 years from now. With these goals in mind, the present book
presents material with sufficient breadth, depth, and rigor to give a solid
foundation to the student’s future professional life.

At the University of California, Berkeley, as in most American engineer-
ing schools, there is a sophomore 45-lecture-hour course called Introductory
Electrical Engineering. Its purpose is to give a broad introduction to most of
the aspects of electrical engineering.

This book is intended as a textbook for the junior course that follows.

xix
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Since it is a junior course, it takes advantage of the greater competence and
maturity of the students: in particular, physics, linear algebra, and differential
equations. This course is the electrical analog of the typical junior physics
course in say, mechanics, electromagnetism, and so on.

This book differs from many other texts on circuit theory by the following
features:

1. Due to the ubiquitous op amp and similar devices, it views a circuit as
an interconnection of multiterminal elements rather than of two-
terminal elements.

. Active and passive circuits are given equal emphasis.

. Linear and nonlinear elements are treated together. (Note that compu-

. ters simulate nonlinear circuits almost as easily as linear ones.)

4. The concept of operating point and the topic of small-signal analysis are
covered thoroughly.

5. Switching, triggering, and memory circuits as well as oscillators are
illustrated with first-order and second-order examples.

6. Tableau analysis is used to greatly simplify the proof of many network
theorems in linear and nonlinear circuits.

7. Modified node analysis is introduced in view of its complete generality
and importance in the design of computer circuit simulators, such as
SPICE.

8. Some numerical methods are introduced and implemented via equiva-

* lent circuits: in particular, solution of nonlinear algebraic equations

(Newton-Raphson) and integration of the circuit differential equations
(forward and backward Euler method).

9. Stability issues are met head on; in particular oscillators are analyzed
and an elementary version of the Nyquist criterion (useful in the design
of op amps circuits) is introduced.

W N

CONTENTS OF THE BOOK

Chapter One treats Kirchhoff’'s Laws and Tellegen’s theorem. The next four
chapters introduce two-terminal and multiterminal resistive elements and
resistive circuits; linear, nonlinear, passive, and active circuits; op amp circuits
with linear and nonlinear models; operating points and small signal analysis;
and network theorems and the Newton-Raphson procedure for solving non-
linear dc resistive circuits.

Chapters Six and Seven cover first- and second-order linear and nonlinear
dynamic circuits: our goal is to exhibit their properties and illustrate them by
numerous examples, including flip flops and oscillators. General dynamic
circuits, analyzed by Tableau or modified node analysis, are covered in
Chapter Eight.

The next three chapters build up the fundamentals of linear time-invariant
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circuits: sinusoidal steady-state analysis; very brief treatment of Laplace trans-
forms; properties of natural frequencies and network functions such as poles,
zeros, stability, and convolution; Nyquist criterion; and stability of terminated
one-ports.

A brief Chapter Twelve broadens the background on network topology
and treats the usual general circuit analysis methods.

Chapter Thirteen covers two-ports, n-ports, and their properties—reci-
procity in particular. :

The last chapter brings out design issues such as the approximation
problem, design of active Butterworth filters, and sensitivity analysis.

We believe that the topics covered in this text constitute an excellent
background for further education in electronic circuits, computer-aided design,
communications, control, and power. :
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