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INTRODUCTION
1

THE INVERSE TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS
IN THE COMPLEX DOMAIN

The MacLaurin series,

3! 5!
is convergent for all complex numbers w», and so defines in the complex
plane a function identical ‘-with the sine when the argument is real.
Hence the series serves to extend to the complex domain the elementary
function x = sin u. Many of the well-known properties of the real

function persist in the complex domain. Thus, defining

2 4L
cos v = ginw = 1 - 22 L2 . cee,
av 21 4!

one may readily extend the addition formula

sin (w]+w2) = sin », cos w, + €08 w, sin w (1)

1 2 1 2’

to the case of any pair of complex numbers w} and w,. The extension
is made in two steps by application of the principle of permanence of
functional relations, or by algebraic manipulations of the series ex-
pressions. Similarly, the Pythagorean relation, gin? » + cos® » = 1, is
vallid for all complex numbhers w.

One may define the hyperbolic sine and cosine as

sinh v = -t sin tw, cosh v = cos iw,

and observe by use of the series that sinh v and cosh v are real-valued
functions of a real variable v. Taking w; = u, w, = vi in the addition
formula one has

sin (u+vt) = sin u cosh v + { cos u sinh v. (2)

This formula provides a device for evaluating the real and imaginary
parts of the function sin w. The device is so easy to apply that it
would seem unnecessary to tabulate the function sin w, but the function.

xi



xii INTRODUCTION

is of such fundamental importance that a number of tables have been made.
Some indication of the usefulness of such tables is given by the fact
that three editions of Kennelly's Chart Atlas appeared between 1914 and

1924.!
In the case of the inverse function,

w = arc sin gz,

the real and imaginary parts of w can likewise be obtained by meéns of
formulas whose evaluation involves only elementary real functions. How-
ever, the formulas are not nearly so simple to apply, since they involve
square roots, together with inverse circular and hyperbolie functions;
in addition, the presence of multiple-valued funetions in the formulas
teuds to provide disagreeable ambiguities. Despite these difficulties
there has been very little tabulation of the inverse sine. In the only
other tables known to the present writers the argument is in polar
coordinates,?,3 while in the present tables the argument and function
are both in Cartesian’ form.

The properties of the inverse function will be studied by means of
conformal mapping. As a preliminary, certain properties of the function
gin » will be listed. The real-valued sine function is odd, and has
period 2rn. The values of the second half-period reflect the values of
the first half-period, according to the law,

sin (n+x) = -sin z,

and the values of the second quarter-peried reflect the values of the
first according to the law,

sin ({n+z) = sin (dn-z) = cos =x.

Hence in the real domain a tabulation of the first quarter-period suf-
fices to tabulate the sine for all real values, and the cosineias well.
All of these properties extend to the complex domain, and indeed may be.
verified at once by means of the addition formula. Note also that if

z+yt = 8in (u+vt),
then «x+yi = sin (-u+ui),

(3)

xz-yt = sin (u-vi1),

-z-yt = sin (-u-vi);

these relations are an immediate consequence of the addition law. By
the relations (3), the sine is known everywhere if it is known in the



THE INVERSE FUNCTIONS xiii

first gquadrant. By the mirror-periodicity on m, the sine is known every-
where if it is known in the strip ¢ < x < m. Combining these, the sine
is known everywhere if it is known in the half-strip 0 <z <1, 0<y.

The function z = sin w defines a mapping of the w-plane onto the =z-
plane. The origin is mapped into the origin, the interval (o, %ﬁ) of
the u-axis is mapped into the interval (0, 1) of the x-axis in a one-to-
one manner. The point (%ﬁ, v) in the w-plane goes into the point
(cosh v, 0) in the z-plane. Accordingly, the upper half of the line
u = i is mapped into the portion x > 1 of the x-axis in a one-to-one
manner. The point (0, v) goes into the point (0, sinh »), thereby
establishing a one-to-one mapping of the positive part of the v-axis
into the positive part of the y-axis. By continuity, the region bounded
by the lines u = 0, u = 47, and the u-axis must then be carried into
the first quadrant of the g-plane. In Fig. 1, the quarter-strip wy is
mapped into the guadrant 2y It will presently be verified that this

w - PLANE z-PLANE
y

Fig. 1

mapping is entirely one-to-one. It follows from the reflectivity
relations (3) that the quarter-strips wiys PIIY’ an&‘va are mapped into
the quadrants 2110 BIII’ and Byy respectively. Assuming that these four
mappings are each one-to-one throughout the interiors and on the bounda-
ries, it is seen that the mapping of the strip -4m <u < 41 onto the
g-plane is one-to-one at all points not on the z-axis, and in fact fails
tobe one-to-one only at points of the x-axis exterior to the unit circle.
Each such point is derived from two points, since the point (cosh v, 0)
has as antecedents the points (4n, *v), and (-cosh v, 0) has as ante-
cedents the points (-inm, #+v).



xiv INTRODUCTION

According to (2) the point (u, v) is mapped into thepoint (x, v),
v z = sin u cosh v, y = cos u sinh v, (4)

and is uniquely determined. From (4),

z2 cos? u - y? sin® u = cos? u sin® u, (4a)

[}

z? sinh® p + y? cosh® v = sinh? v cosh? v. (40)

If u is held constant (4a) represents a hyperbola. This means that
points of the line u = ¢ are mapped into points of the hyperbola (4a).
Since the quadrant in whiech a point falls is preserved by the mapping,
the upper and lower halves of the line u = ¢ are mapped into the upper
and lower halves of a branch of the hyperbola (4a); the remaining branch
is provided as the transform of the line u = -¢. Similarly the pair of
lines v = tc map into the ellipse (4b) (see Fig. 2). It follows from

\J
P, P, y

PFig. 2

continuity that the entire ellipse and hyperbola are generated, and not
merely portions of them. Thus the family of lines parallel to the v-axis
maps into the family of hyperbolas (4a), and the family of lines parallel
to the u-axis maps inte the family of ellipses (4b); since the mapping
is conformal the families (4z) and (4») are mutually orthogonal. A given
point (z, y) is determined as a point of intersection of a uniguely de-
termined pair of orthogonal conics whose antecedent is a pair of straight
lines. The unique point of intersection of the latter is the unique
antecedent of the point (xz, y).
If ¥ is a rational integer the locus of points satisfying

(k-3 <u< (k+d)m
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is ealled the kth period strip. Every period strip is maupped into the
entire z-plane. If k is even this follows from the periodicity

sin (2nm+w) = sin v,
and if k 1is odd this follows from the relation
sin ((2n+1)m+w) = -sin w.

The mapping of the xth period strip into the z-plane is like that of
the zeroth if x 1is even, and is its mirror-image in the axis of imagi-
naries if k 1is odd. The correspondence between quarter-strips and
guadrants is indicated in Fig. 3. .

The inverse function, w = arc sin z, may now be defined by 1nvert1ng
the mapping. To each point g = x+yi there corresponds a point » = u+vi,
and with it all points (w+zxn), (2k+1 )m-w, where k is a rational integer.

w- PLANE z- PLANE
I I I I i I i I
-3 |-w -F o 7 1r iw
Iv | I o V| Iv | I L "4
Fig. 3

In any period strip the point » is unique, except when 2z is on the z-
axis and outside the unit circle, in which case there are two points w,
corresponding to w = utvi. It is convenient for some purposes to'define 
a principal value of the Inverse sine; this will be done here by choosing
the values » that lie in the interior of the period strip -4m < u < 4n
and including with.them the boundary points that lie above the axis of
reals. This definition is an extension of the one used in the real
domain, and consisteht with it. The notation arc sin g will hereafter
refer to the principal value, except where it is expressly indicated
otherwise. It may bé noted at once that the symmetfies of the sine are
valid for its inverse, that is, if
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13

u+vi arc sin (z+yt),

then =
-u+pi = arc sin (-x+yt)
’ (5)
u-vt = arc sin (z-yi),
-u-pi = arc sin (-z-yt).
Accordingly, it is necessary to tabulate the first gquadrant only.
As mentioned previously, given z and y, the corresponding values
u and » may be computed directly. In fact, letting r = sin® u and
b = z2+y2+1, one may write (4a) as a quadratic equation in r,

re2 - br + z% = 0. . (6)

Similarly, the substitution » = cosh? » transforms (4») into a quadratic
equation, which turns out to be identical with (6). Hence sin? u and
cosh? v gre the roots ' ' '

4(b + Vbo-42z°) = 4(» £ D)

of (6). Since sin? u < 1 < cosh?® v, it follows that 2 sin® u = »-D,
2 cosh?® v = b+D, where

D =VbpR-4z? ='er2+y2)2 + 1 - 2(x2-p%). (")

Next ene may write

e =oco82u =1 -2 8in? u =1 - (b-D) = -(x2+y?) + D,
(8)
(b+D) - 1 = (x2+y?) + D.

d =cosh 2v = 2 cosh® v - 1

The expressions (8) lead to the required expressions for u and v in the
form
u = 4 arc cos ¢, v = 4 arc cosh d. (9)

In passing, let the identities

(1-c)(1+d) = 4z?, ' (1+¢) (a-1) = 4y2, (10a)

fl

(1+¢) (1+d) = 2(1-x?+y2+D), (1-¢)(da-1) = 2(-1+z?-y2+D), (100)

be noted for later use.

VWhen the formulas (9) are used any apparent ambiguities may be resolved
according to standard usage; thus b is the positive sguare root, the
number arec cosh d is real and non-negative, the number arc cos c is
the ordinary prinecipal value, a number between O and n satisfying the
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relations

are cos {(-c) + arc cos ¢ = m, arc sin.c + arc cos c = 3m.

This determines |u| and [v|, after which algebraic signs are adjoined so
as to place u+vi in the same quadrant as z+yi. The number u+vi thereby
obtained is the principal value w of arc sin s, from which all other
values can be obtained ms the numbers 2kn+w, (2k+1)n-w, where k is a
rational integer.

. VWhen z or y is large the formulas (7) and (8) are less convenient to
: aﬁply. 'Notice, for example, that the first of Eqs. (8) expresses ¢ as
the difference of two large, nearly equal quantities. In such cases
the binomial expansion becomes very useful. A few developments based on
it will be obtained at once.

Let G = z2+yR, F = z2-y2, L = (1-2r)/6?. Then

1 1

(G2+1-2F)* = 0[1 + %I: - §L2 + TB,L3 - -..],

o
]

¢ = -G + D = G[EL L2 + IBL - ..]
F .1 G2-72 1 p(62-r2 -
C—U+g-——-—-’——- 2-.—(_—-—-—2--'- -.0-—_—l—+p,

¢3 @3 zzi«y

;p = [ + z2- + ..i].
' (z _y2)3 (z2+y2)2

Since the relation arc cos ¢ = 47 - arc sin ¢ holds whether c is posi-
‘tive or negative, one may write

u =% arc cos ¢ = 4w - 4 arc sin -z, P (11a)
. z2+y?
Next
d =G+ D= 6[2 + éﬁ - %LZ + --],
*‘\/dz_l =2d -Eiz--}-_- a s s *
i 8d3
1,2, 1 1
= G(4+L-ZL+++0) = - + oo
o G(4+L-éL2+~-.) 63(4+L-%L2+...)3 '
- (3-8F) e 2,,2 .
46+ g - Ga“ = 4lefa®) - e,

. (3-8m2+8y2) _ (x2_y2)2 .
4(x?+y?) (z?+y?)3




xviii - INTRODUCTION

Hence
v = 4 arc cosh ¢ = § log, (d + Vd*-1) = % log, [4(x2+y2) + p'] . (11p)

Again,

1
-3

]

3= (¢2n1-2m)77 =67 (1 - 3+ g - 5%+ oo

2 _n2 3_ 2
F, 3FR-g2  BF3-3FCF | (12a)
g? 264 26

I

el (1 +

% . I, 3r%-1  5r3-3r

G? 263 204

+ v,

It

where r = F/G = (x2-y?)/(x?+y?). Similarly,

1-F _ _1-F  _ (1-F)(a+0)"" | (-P+1) (1-L+L2-L3+...)
b G2 -2r+1 G? © gR
_ _ P _F(2r-1) F(2F-1)2 _ F(2F-1)° _ ..
2 4 6 8
‘ ’ g ¢ (12»)
+ 1 2ra (2r-1)
G2 G4 ¢b

+ e

% s 1-2r2 _3r-ar3  -148r2-gr*
G2 g3 G

The last two expansions have been obtained in anticipation of the dis-
cussion of the derivative of the are sine, which is considered next.
The derivative of w = arc sin z is expressed formally by

dw 1

and is in faet that branch of this function that coincides with 1A/1-x2
for smadl real x. The function arc sin z has a finite derivative at all
complex points except at the branch points 3 = *1. The derivative dw/ds
will be denoted more briefly by »°, and its respective real and imaginery
parts by u’ and v”. More generally, the nth derivative ¢"w/ds" will be
denoted by w(n), and its real and imaginary parts by u(") and v(n’
respectively.

It has just been moted that »° = 1//1 « (x+yt)2. By squaring and
rationalizing this may be separated into its real and imaginary parts
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U’Z‘U”z = (_1:.—3-2—-'1-2—)—' u‘v’ = ﬂ' | (130)
A A .

where A is a function of z and y, defined by
A= D2 = (zR+y%)2% + 1 - 2(x2-y?).

The simultaneous quadratic equations (13a) can be solved simultaneously
to give

. (13»)

1-z2+y2+8,D . ~1+x°-y2+s,D
u’ = s, v’ = s,

2A ! 2A

In (13b), e% = s3 = 1. Actually, s, = s, = 1; instead of verifying this
directly it will be obtained through the use of alternate expressions
for u° and v” obtained by means of the Cauchy -Riemann differential
equations. Thus, from (8) and (9), |

-gbugg +e vl=al’r.:.'b'b -1
u 3z ~ D Vi-e’ 3z - BVa+ir

on the one hand, and on the other,

Three different sets of analytic expressions have been obtained for u°’,
v’. Their equivalence may be verified by use of the identities (10a) and
(10b5, but only the choice s, '.’z = 1 will reconcile a Cauchy-Riemann
expreassion for the derivative with the one in (13»). The expansions
(12a) and (12b) can be used to evaluate 2u’? and 2v°2? when z or y is
large.

The second derivative is w” = g(1-x?)
n exceeding unity,

e

-3/2 sw’3. More generally, for

(n} (n-=1}

- 02 = - (n—‘a)
» ¢, w°%, ¢, (2n-3)w .

2 + (n=2)2p
.:Thii‘ean be proved by induction. It is trué for n = 2. ‘Assune it is
true for n. Notice that G,u»” = ¢,»°% = v'"'v’s. The derivative of
order n+l 1is
- 4@
0" . v’? 1ﬁg‘f 24 v v”.
On insertion of the expanded expressions for G, and its derivative. this
becomes ’ :
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- (in=11} . (n)
PALAL S &Zn-3)w(n,l'+ (2n-3)0'""" + (n-2)20 " ] +20°% s

BZn-l)w("’s + (n-;)zw(n-'i]w’z‘é Gn+1?'2'

completing the induction. The real and imaginary parts of the recurrence

formula for w‘n) may be written separately as

- - n=-21) ’, » .
LI [an_s)(xutn 1y hly (n-2)2s" ] (6'2-p"2)

[(zn_s)(zb(n")+yu(N'l)) + (n-z)zv(n"z’ 2"‘:!’;’
: (14)
v(n) - [(2n_3)(zv(n-1!+yu(n-!l) + (n_z)zv(ﬂ-z)] (ulz-viz)

[(2n-3)(zu(,n-‘ Vayp'hTThy (n-?.)?u(."‘-? )] 2u’v’.

The function » = arc sin z may be expanded in Taylor's series: about
apy point of the complex plane, with the exception of the branch points
g = +1; and the coefficlents of the expansion may be calculated with the
aid of the expressions for the derivatives that have been obtained here.
At the branch point g = 1 the function is not analytic, but the function

(4v - are sin z) arc cos z

(2-20)% (2-25)%

¢(z) =

is snalytie there, and may be expanded in Taylor's series. The values
6(1),6°(1),67(1),..., may be calculated with the aid of 1'Hépital's rule,
_and this leads to the series

6la) =1+ 2(1eg) + A8 _(10)2 + 235142 4 .l
3.4 215.4% 317.-43

It may be gseen that this series converges in the interior of a circle of
radius two and center unity; hence the function arc cos z is represented
there by the function

ard cos = =.(2-2s)%Gis).< - . : .- (15a)

From the expansion (15a) may be obtained = correspondihg exp@hsiqn,
.converging at interior points of a circle of radius two and center gz = -1:

are cos 3 =71 - arc cos8 (-z) = n - (2+2;)%G(—a). (15b)

For practical purposes it is desirable to separate the real and’imﬁgif:
nary parts of (152). To avoid a tedious calculation in this separation
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‘one may proceed as follows. The real part 1s, by (9), u = § are cos c.
If x 1s near 1 then ¢ 1s near -1 and arc cos c may be calculated by use

of (15»): . ‘ ' | : .
w = dln - (2e2ertec-0)] .

An expression for the imaginary part may be found 1in much the same
_ mammer. By (9), v = 4 arc cosh d = -4t arc cos d. If z is near 1 then
~so is d; moreover, the real number 1-d is negative. Hence, using (15a),

s = bi(z-2toca) - d2a-2be(a).
These results for u and v may be restated in terms of the fumction
as’ follows: ' o - Coe : -

w = dn -VE o), | v =\/§T,(-¢). T am
?The expressionl (17) are obtained by setting t = 1+c in’ the firct and
"t = d-1 in the second. ’

In the real domain the circular and hyperbolic functions must be
classed separately, gince there are no real transformations interchanging
the functiOns ‘of these two classes. 'In the complex domain the functions
must’ be classed together,'since, as has already been obcorved there
exist complex transformations that interchange them. ‘The ‘same ‘1s true
“of their inverses; accordingly, the present tables can serve as tables
of all’ invérse circular and hyperbolic functions in the complex domain.
Use has already been made here ‘of the very simple relations connecting

inverse c¢ircular and hyperbolic sines and cosines. These relations may
be shown in the form: ' '

"‘arc cos z in - arc sin s,

arc sinh z = -{ arec sin ia,

arc cosh g = -¢ arc cos g = ={ (47w - arc sin z).

Each of  these cqcntions is true whether it is 1nterproted as an equctionh
relating principal valuee, or as an eguation bearing on nonoprincipal
values. For .example, the first equation may be taken as ctating that
the prineipal value of the arc cosine is obtained by subtrccting from 4n
the principal value of the arc sine; or, it may be taken as stdting‘that
if v is & number whose sine is g then im - » is a number whose cosine is
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s, and that, moreover, as w runs through 8ll values for which sin v is z
then #n - » runs through all values whose cosine 1is s. -
The present tables can be used to evaluate are tan z, but this evalu-

ation requires a little care. One may write

= 4 arc sin 25,

\/1—;;5 1ex?’

arid thus express the arc tangent formally in terms of the arc sine in
two different ways. The validity of each of these expressions may be
verified purely formally by differentiation; in all three cases the
derivative is 1/(1+g2), and since all three functions have the same value
at the origin, and have the same derivative, presumably the functions
are identical. This glves a choice of two expressions for obtaining the
arc tangent, and normally the second ought to be preferred, since it
involves no square root extraction. Unfortunately, the second is also
like1y1u>g1ve & value that is not the principal value of the arec tangent,
despite the fact that the prineipal value of arc sin 2z/(1+3?) is used to
obtain it. 1In order to understand the correct use of the given formulas
it 1is neeessary to study the function arc tan z, and this will be done
-here by 1nvert1ng the mapping » = tan w.

This mapping is shown in Fig. 4. The period strip -4m < v < in is
mapped into the entire s-plane with preservation of quadrants. Il each
plane is considered to have a point at infinity then the mapping is
one-to-one with a single exception: the point w_ is mapped into the two
points s = *#{. Notice that the point v = 4n corresponds to the point
5. The kth period strip An-4m < » < kn+dn is likewise mapped into the
entire x-plane, because of the periodicity

arc tan g = arc sin

tan (knv+w) = tan w».

w- PLANE z-PLANE

Fig. 4
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The distribution of quarter-period-strips and quadrants is shown in
Pig. 5. : '

The inverse function, » = are tan g, may now be defined by inverting
the mapping. It is an infinitely-multiple-valued function whose princi-
pal value may be defined as that value which lies in the prineipal period

w-PLANE z-PLANE

F N A R TR

Fig. §

strip -dn < w < U Moreover, if w = arc tan z, then as & runs through
2ll rational integers the number w+km runs through all possible values
of arc tan g. Note also the reflection properties, which state that if

u+vt = arc tan (x+yt),

then u-vt = arc tan (2-yt),

-u+vi = arc tan (-z+yt),

~u=-pf = arc tan (-z-yi).

It is seen that the problem of determining are tan z may be referred to
the case in which ¢ is in the first quadrant. ’

If z is a number in the first quadrant, then so is { = z2/V1+g?, and
arc tan gz may be obtained by use of the present tablesz once the number
L has been calculated. The numerical labor is much simpler if instead
one uses the formula '

arc tan 5 = % are sin E,

with £ = 25/(1+s2). However, it may occur that E is in the fourth
quadrant, and the required arc tan z must be a first quadrant number. To
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avoid this difficulty it 1is necessary to select from among the complex
numbers arc sin E+2kn, (2k+1)m - arc sin £, one that liles in the Pirst

guadrant. In other words, if z is in the first quadrant, are tan s 1s

4 arc sin ' first
if £ is in the quadrant.
4(m - arc sin E) fourth

In this connection see Examples 6 and 7 at the end of S8ection 1II of this

Introduction.
The determination of all other inverse trigonometric and hyperbolic
functions in the complex domain may be referred to those here discussed,

and hence to the present tables of the inverse sine. Thus

arc tanh s = -{ arc tan is,

arc sec g = arc cos 1/:, arc sech z = arc cosh 1/.,
arc ¢sc z = arc sin 1/s, arc csch s = arc sinh 1/a,
are cot & = are tan 1/a, arec coth z = arc tanh 1/z.
REFERENCES
1. Kennelly, A. K., Chart Atlas of Compler Hyper=~ tm Komplexzen, Berlini Elektrotechnischer Verein
boltc and Circular Punottons, Cambridge: Harvard (1991).
University Press, Pirst Blition, 1014; Second Edition, 3. Jahnke, K. and Emde, F., Punktionentafeln mit
1821; Third Edition, 1924. | Pormeln und ZKurven, Second Edition, Leipzig und
2. Havelka, R., Vieratelligs Tafeln der Krets- Berliin: Teubmer (19033). )

und Hyperdelfunktionen, sowls iArer Umkshrfunktionen,



INTRODUCTION
II
COMPOSITION OF THE TABLES

The discussion of the preceding section provides a basis for planning
the arrangement and computation of a table of the function

s(z) = arc sin =.

It is sufficient to tabulate f(2) in the first quadrant; however, in a
finite tabulation only a limited portion of the quadrant canbe tabulated.
Moreover, it is not possible to give a fully interpolable tabulation of
f(s) in the vicinity of the singularity z = 1. In fact, along any line
emanating from the branch point interpolation iﬁproves as the distance
increases, so it cannot be expected that e single mesh on 1 will suffice
for an efficient tabulation of the function. Accordihgly, the present
tables were planned as a set of tables on successively coarser meshes,
covering regions of the plane at successively larger distances from the
branch point. '

Each table covers a region consisting of one, two, or three rectangles.
To begin with, the region for the first table 1is s small rectangle con-
taining the branch point = = 1. To form the region corresponding to the
second table, one begins with a larger rectangle containing the brapch
point. The first rectangle is entirely contained in the second; by
displacing it vertically until the ovérlap vanishes one arrives at a
region which may be described as consisting of three rectangles, and this
tri-rectangle is taken to be the domaih'of”tabulation}of the second
table. The successive reglons are formed in a similar manner. For the
composition of the several tables see Figs. 6 and 7. In the execution
of this plan slight'modifioatidns were made for reasons of typographical
convenience.

In each table fhe tabular mesh is the same in both directions:
Ax = Ay = 8. Each table is composed of subtables. In a subtable x is
fixed and y varies from y, through y,+70Ay. In a large majority of
cases y, 1s zero; but there are some cases where Vo, is different from

" xxv
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zero, corresponding to the places
where the nested rectangle was dis-
placed to eliminate redundant tabu-
lation.

Each subtable contains the real
and imaginary parts of the function
7(z), together withds (s), 15277 (2).
Six decimal place values are given.
All numbers were rounded off before
printing. Each page of the book
contains two complete subtables.

For computation, the quadrant
was divided into complementary
regions S and §° S was the
rectangle y < 0.6, = < 1.35. In
S, u and v were calculated by use
of the direct formulas (9).* In e
form amenable to the Mark IV Calcu-
lator the latter read

u = are tan’-%&%
if ¢ 1is positive,
u = 4 - arec tan %;%

if ¢ 18 negative;
= 4 log, (4 +Vd®-1)

The variables ¢ and 4 are funetions
of z and y defined by the formulas
(7) and (8). The principal check
of u and v was by the inverse
funetions

cos (dmr-u) x %(c”+-1;),
e

x =

y = €08 u X &(a”-lﬁ);
e

vhich were applied with a tolerance
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In this range the check

could be expected to deteet errors in u or v exceeding 10~

* All equation numbers refer to equations in Section I.



