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PREFACE

My main purpose in this book is to present a unified treatment
of that part of measure theory which in recent years has shown
itself to be most useful for its applications in modern analysis.
If I have accomplished my purpose, then the book should be
found usable both as a text for students and as a source of refer-
ence for the more advanced mathematician.

I have tried to keep to a minimum the amount of new and
unusual terminology and notation. In the few places where my
nomenclature differs from that in the existing literature of meas-
ure theory, I was motivated by an attempt to harmonize with
the usage of other parts of mathematics. There are, for instance,
sound algebraic reasons for using the terms “lattice’” and ‘“‘ring”
for certain classes of sets—reasons which are more cogent than
the similarities that caused Hausdorff to use “ring” and “field.”

The only necessary prerequisite for an intelligent reading of
the first seven chapters of this book is what is known in the
United States as undergraduate algebra and analysis. For the
convenience of the reader, § 0 is devoted to a detailed listing of
exactly what knowledge is assumed in the various chapters. The
beginner should be warned that some of the words and symbols
in the latter part of § O are defined only later, in the first seven
chapters of the text, and that, accordingly, he should not be dis-
couraged if, on first reading of § 0, he finds that he does not have
the prerequisites for reading the prerequisites.

At the end of almost every section there is a set of exercises
which appear sometimes as questions but more usually as asser-
tions that the reader is invited to prove. These exercises should
be viewed as corollaries to and sidelights on the results more
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vi PREFACE

formally expounded. They constitute an integral part of the
book; among them appear not only most of the examples and
counter examples necessary for understanding the theory, but
also definitions of new concepts and, occasionally, entire theories
that not long ago were still subjects of research.

It might appear inconsistent that, in the text, many elementary
notions are treated in great detail, while, in the exercises, some quite
refined and profound matters (topological spaces, transfinite num-
bers, Banach spaces, etc.) are assumed to be known. The mate-
rial is arranged, however, so that when a beginning student comes
to an exercise which uses terms not defined in this book he may
simply omit it without loss of continuity. The more advanced
reader, on the other hand, might be pleased at the interplay
between measure theory and other parts of mathematics which
it is the purpose of such exercises to exhibit.

The symbol Jis used throughout the entire book in place of
such phrases as “Q.E.D.” or “This completes the proof of the
theorem” to signal the end of a proof.

At the end of the book there is a short list of references and a
bibliography. 1 make no claims of completeness for these lists.
Their purpose is sometimes to mention background reading,
rarely (in cases where the history of the subject is not too well
known) to give credit for original discoveries, and most often to
indicate directions for further study.

A symbol such as #.v, where « is an integer and v is an integer
or a letter of the alphabet, refers to the (unique) theorem, formula,
or exercise in section # which bears the label .
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§0. PREREQUISITES

The only prerequisite for reading and understanding the first
seven chapters of this book is a knowledge of elementary algebra
and analysis. Specifically it is assumed that the reader is familiar
with the concepts and results listed in (1)—(7) below.

(1) Mathematical induction, commutativity and associativity
of algebraic operations, linear combinations, equivalence relations
and decompositions into equivalence classes.

(2) Countable sets; the union of countably many countable
sets is countable.

(3) Real numbers, elementary metric and topological properties
of the real line (e.g. the rational numbers are dense, every open
set 1s a countable union of disjoint open intervals), the Heine-
Borel theorem.

(4) The general concept of a function and, in particular, of a
sequence (i.e. a function whose domain of definition is the set of
positive integers); sums, products, constant multiples, and abso-
lute values of functions.

(5) Least upper and greatest lower bounds (called suprema and
infima) of sets of real numbers and real valued functions; limits,
superior limits, and inferior limits of sequences of real numbers
and real valued functions.

(6) The symbols 4+ and —, and the following algebraic rela-
tions among them and real numbers x:

(£0) + (£2) = & + (£0) = (£®) + x = xw;

+o ifx >0,
x(£o) = (£x)x = {0 ifx=0,
Fo if x < 0;
(£0)(£0) = +x,
(£0)(Fowo) = —o;
x/(£®) = 0;

-0 < x < o,
1



2 PREREQUISITES [Sec. 0

The phrase extended real number refers to a real number or one

of the symbols =,
(7) If x and y are real numbers,

sx+y+lx—D,

x Uy = max {x,y}
x Ny =min {xy} = 3(x+y —|x -y

Similarly, if f and g are real valued functions, then f U g and
f N g are the functions defined by

(fUDK) =f(x) Ugl) and (f N ) =f(x) N gl),

respectively. The supremum and infimum of a sequence {x,}
of real numbers are denoted by

U:-l Xn and n:-lx'rt)

respectively. In this notation

lim sup, x, = n:-l Un-n *n
and
liminf, X, = Urei Niaen #me

In Chapter VIII the concept of metric space is used, together
with such related concepts as completeness and separability for
metric spaces, and uniform continuity of functions on metric
spaces. In Chapter VIII use is made also of such slightly more
sophisticated concepts of real analysis as one-sided continuity.

In the last section of Chapter IX, Tychonoff’s theorem on the
compactness of product spaces is needed (for countably many
factors each of which is an interval).

In general, each chapter makes free use of all preceding chap-
ters; the only major exception to this is that Chapter IX is not
needed for the last three chapters.

In Chapters X, XI, and XII systematic use is made of many
of the concepts and results of point set topology and the elements
of topological group theory. We append below a list of all the
relevant definitions and theorems. The purpose of this list is not
to serve as a text on topology, but (a) to tell the expert exactly
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which forms of the relevant concepts and results we need, (b) to
tell the beginner with exactly which concepts and results he should
familiarize himself before studying the last three chapters, (c) to
put on record certain, not universally used, terminological con-
ventions, and (d) to serve as an easily available reference for
things which the reader may wish to recall.

Topological Spaces

A topological space is a set X and a class of subsets of X, called
the open sets of X, such that the class contains 0 and X and is
closed under the formation of finite intersections and arbitrary
(l.e. not necessarily finite or countable) unions. A subset E
of X is called a G; if there exists a sequence {U,} of open sets
such that £ = (7., U,. The class of all G5’s is closed under the
formation of finite unions and countable intersections. The topo-
logical space X is discrete if every subset of X is open, or, equiva-
lently, if every one-point subset of X is open. A set E is closed
if X — Eis open. The class of closed sets contains 0 and X and
is closed under the formation of finite unions and arbitrary inter-
sections. The interior, £°, of a subset E of X is the greatest open
set contained in E; the closure, E, of E is the least closed set con-
taining E. Interiors are open sets and closures are closed sets;
if E is open, then E° = E, and, if £ is closed, then E = E. The
closure of a set E is the set of all points x such that, for every open
set U containingx, EN U = 0. A set Eisdensein XifE = X.
A subset Y of a topological space becomes a topological space
(a subspace of X) in the relative topology if exactly those subsets
of Y are called open which may be obtained by intersecting an
open subset of X with Y. A neighborhood of a point x in X
[or of a subset £ of X] is an open set containing x [or an open set
containing £]. A base is a class B of open sets such that, for
every x# in X and every neighborhood U of x, there exists a set
B in B such that x e B < U. The topology of the real line is
determined by the requirement that the class of all open intervals
be a base. A subbase is a class of sets, the class of all finite inter-
sections of which is a base. A space X is separable if it has a
countable base. A subspace of a separable space is separable.
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An open covering of a subset E of a topological space X is a
class K of open sets such that £ < |J K. If X is separable and
K is an open covering of a subset £ of X, then there exists a
countable subclass { K1, Ks, - - -} of K which is an open covering
of E. A set Ein X is compact if, for every open covering K of E,
there exists a finite subclass { K1, - - -, K.} of K which is an open
covering of E. A class K of sets has the finite intersection prop-
erty if every finite subclass of K has a non empty intersection.
A space X is compact if and only if every class of closed sets with
the finite intersection property has a non empty intersection. A
set £ in a space X is o—compact if there exists a sequence {C,}
of compact sets such that £ = {J7., C.. A space X is locally
compact if every point of X has a neighborhood whose closure is
compact. A subset £ of a locally compact space is bounded if
there exists a compact set C such that £ < C. The class of all
bounded open sets in a locally compact space is a base. A closed
subset of a bounded set is compact. A subset E of a locally com-
pact space is o—-bounded if there exists a sequence {C,} of compact
sets such that £ < 7., Ca. To any locally compact but not
compact topological space X there corresponds a compact space
X* containing X and exactly one additional point x*; X*is called
the one-point compactification of X by x*. The open sets of X*
are the open subsets of X and the complements (in X*) of the
closed compact subsets of X.

If {Xi:iel} is a class of topological spaces, their Cartesian
product is the set X = X {X;: i e I} of all functions x defined
on [ and such that, for each i in I, x(i) e X;. For a fixed 1y In
I, let E;, be an open subset of X, and, for i = iy, write E; = X
the class of open sets in X is determined by the requirement that
the class of all sets of the form X {£,: i e I} be a subbase. If
the function £; on X is defined by &;(x) = x(i), then ¢; is continu-
ous. The Cartesian product of any class of compact spaces is
compact.

A topological space is a Hausdorff space if every pair of distinct
points have disjoint neighborhoods. Two disjoint compact sets
in a Hausdorff space have disjoint neighborhoods. A compact
subset of a Hausdorff space is closed. If a locally compact space



[Szc. 0] PREREQUISITES 5

is a Hausdorff space or a separable space, then so is its one-point
compactification. A real valued continuous function on a compact
set is bounded.

For any topological space X we denote by § (or (X)) the class
of all real valued continuous functions f such that 0 < f(x) £ 1
for all x in X. A Hausdorff space is completely regular if, for
every point ¥ in X and every closed set F not containing y, there
is a function f in § such that f(y) = 0 and, for x in F, f(x) = 1.
A locally compact Hausdorff space is completely regular.

A metric space is a set X and a real valued function & (called
distance) on X X X, such that d(x,y) = 0, d(x,y) = 0 if and only
if x = y,d(x,y) = d(y,x), and d(x,y) £ d(x,z) + d(z,y). If E and
F are non empty subsets of a metric space X, the distance between
them is defined to be the number d(E,F) = inf {d(x,y): x ¢ E,
y e F}. If F = {xo} is a one-point set, we write 4(E,x,) in place
of d(E,{xo}). A sphere (with center x, and radius r) is a subset
E of a metric space X such that, for some point x, and some posi-
tive number 7o, £ = {x: d(xo,x) < ro}. The topology of a metric
space is determined by the requirement that the class of all
spheres be a base. A metric space is completely regular. A closed
set in a metric space is 2 Gs. A metric space is separable if and only
if it contains a countable dense set. If E is a subset of a metric
space and f(x) = d(£,x), then f is a continuous function and
E = {x:f(x) = 0}. If Xis the real line, or the Cartesian product
of a finite number of real lines, then X is a locally compact separa-
ble HausdorfF space; it is even a metric space if for x = (xy, - - -, %5)
and y = (y1, -, ya) the distance d(x,y) is defined to be
(Oofar (e — y92)%. A closed interval in the real line is a com.
pact set.

A transformation T from a topological space X into a topological
space Y is continuous if the inverse image of every open set is
open, or, equivalently, if the inverse image of every closed set is
closed. The transformation T is open if the image of every open
set is open. If B is a subbase in Y, then a necessary and sufficient
condition that T be continuous is that 77!(B) be open for every
B in B. If a continuous transformation T maps X onto Y, and
if X is compact, then Y is compact. A homeomorphism is a one
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to one, continuous transformation of X onto Y whose inverse is
also continuous. '

The sum of a uniformly convergent series of real valued, con-
tinuous functions is continuous. If f and g are real valued con-
tinuous functions, then f U g and f N g are continuous..

Topological Groups

A group is a non empty set X of elements for which an associa-
tive multiplication is defined so that, for any two elements a and
b of X, the equations ax = 4 and ya = & are solvable. In every
group X there is a unique identity element ¢, characterized by
the fact that ex = x¢ = x for every x in X. Each element x
of X has a unique inverse, x™, characterized by the fact that
xx7! = x7!x =e. A non empty subset ¥ of X is a subgroup
if 7'y ¢ Y whenever x and y are in Y. If E is any subset of a
group X, E7' is the set of all elements of the form x~!, where
x e E5if E and F are any two subsets of X, EF is the set of all
elements of the form xy, where x ¢ £ and y e F. A non empty
subset ¥ of X is a subgroup if and only if Y'Y c Y. Ifxe X,
it is customary to write x£ and Ex in place of {x}E and Efx}
respectively; the set x£ [or Ex] is called a left translation [or right
translation] of £. If Y is a subgroup of X, the sets Y and Yx
are called (left and right) cosets of Y. A subgroup Y of X is
invariant if xY" = Yx for every x in X. If the product of two
cosets ¥, and Y. of an invariant subgroup Y is defined to be
Y,Y’, then, with respect to this notion of multiplication, the class
of all cosets is a group ¥, called the quotient group of X modulo
Y and denoted by X/Y. The identity element & of X is V. If
Y is an invariant subgroup of X, and if for every x in X, m(x)
is the coset of ¥ which contains x, then the transformation =
is called the projection from X onto X. A homomorphism is a
transformation 7T from a group X into a group Y such that
T(xy) = T(x)T(y) for every two elements x and vy of X. The
projection from a group X onto a quotient group X is a homo-
morphism.

A topological group is a group X which is a Hausdorff space
such that the transformation (from X X X onto X) which sends
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(x,y) into ¥y is continuous. A class N of open sets containing
¢ in a topological group is a base at ¢ if (a) for every x different
from e there exists a set U in N such that x ¢ U, (b) for any two
sets U and 7 in N there exists aset # inNsuch that 7 < U N /7,
(c) for any set U in N there exists a set 7 in N such that
V-1 < U, (d) for any set U in N and any element x in X, there
exists a set ¥ in N such that 7 < xUx™}, and (e) for any set U
in N and any element x in U there exists a set / in N such that
Vx < U. The class of all neighborhoods of ¢ is a base at ¢; con-
versely if, in any group X, N is a class of sets satisfying the condi-
tions described above, and if the class of all translations of sets
of N is taken for a base, then, with respect to the topology so
defined, X becomes a topological group. A neighborhood 7 of ¢
is symmetric if ¥ = /7!; the class of all symmetric neighbor-
hoods of ¢ is a base at e. If N is a base at ¢ and if F is any closed
setin X, then F = [} {UF: U ¢ N}.

The closure of a subgroup [or of an invariant subgroup| of a
topological group X is a subgroup [or an invariant subgroup] of
X. If Yis a closed invariant subgroup of X, and if a subset of
X = X/Y is called open if and only if its inverse image (under
the projection =) is open in X, then X is a topological group and
the transformation = from X onto X is open and continuous.

If Cis a compact set and U is an open set in a topological group
X, and if C < U, then there exists a neighborhood / of ¢ such
that VCV < U. If C and D are two disjoint compact sets, then
there exists a neighborhood U of ¢ such that UCU and UDU
are disjoint. If C and D are any two compact sets, then C~!
and CD are also compact.

A subset E of a topological group X is bounded if, for every
neighborhood U of ¢, there exists a finite set {xy, - - -, x,} (which,
in case E = 0, may be assumed to be a subset of E) such
that £ < (J7- #:U; if X is locally compact, then this definition
of boundedness agrees with the one applicable in any locally com-
pact space (i.e. the one which requires that the closure of E be
compact). If a continuous, real valued function f on X is such
that the set N(f) = {x:f(x) = 0} is bounded, then f is uniformly
continuous in the sense that to every positive number e there



