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Preface

The past two decades have seen an explosion of interest in statistical model
selection that is largely driven by practical needs. The traditional methods
of model selection, a core of which are the information criteria, encounter
difficulties in dealing with high-dimensional and complex problems.

The main difficulty brought by the high-dimensional problems is com-
putational. For example, in regression variable selection when the number
of candidate variable, p, is large, it is computationally expensive, or even
infeasible, to carry out all-subset selections, as required by the informa-
tion criteria. Furthermore, when p is larger than n, the sample size, the
standard method of fitting the least squares, which is needed in computing
the information criterion function, is not possible. There have been major
breakthroughs in high-dimensional model selection, thanks to the proposal
of shrinkage selection/estimation methods [Tibshirani (1996), Fan and Li
(2001), among others].

On the other hand, complex selection problems are often encountered.
For example, in many problems of practical interest, the observations are
correlated in complex ways. Mixed effects models, such as linear and gener-
alized linear mixed models, have been used in analyzing such complex data,
but little was known about model selection in such situations. In partic-
ular, the use of information criteria was largely ad hoc for mixed model
selection. In some other cases, the distribution of data is not fully speci-
fied. Here, once again, one encounters difficulty in using the information
criteria, because the likelihood function is not available. Another complica-
tion came when the data involve missing values, which occurs frequently in
practice. The standard methods for model selection, including associated
software package, were built for the complete-data situations. As such,
these methods and software cannot be directly applied to cases of missing
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or incomplete data.

In a breakthrough in complex model selection, Jiang, Rao, Gu and
Nguyen [Jiang et al. (2008)] proposed a new class of strategies for model
selection, which they coined fence methods. The idea consists of a proce-
dure to isolate a subgroup of candidate models, known as “correct models”,
by building a statistical fence, or barrier. Once the fence is built, an opti-
mal model is selected from those within the fence according to a criterion
that can be made flexible. In particular, the criterion of optimality can
take practical considerations into account. A number of variations of the
fence have since been developed. The fence was motivated by the need to
overcome the difficulties encountered by the information criteria. Major
features of the fence include (i) flexibility in choosing both the measure of
lack-of-fit and the criterion of optimality for selection within the fence; (ii)
it is data-driven, giving the data plenty of opportunities to “speak out” in
making some difficult decisions, namely, the choice of tuning parameters;
and (iii) it leaves a room for practical considerations that is specialized
to the current problem. A recent review by Jiang (2014) has provided an
overview of the fence, including major advances, applications, and open
problems. A software package, recently developed by T. Nguyen, J. Zhao,
J. S. Rao and J. Jiang and available online at http://fencemethods.com/,
has implemented most of the methods associated with the fence.

This monograph is devoted to giving a detailed account of the fence,
including its variations, and related topics. It is mainly intended for re-
searchers and graduate students, at M.S. or higher level. The monograph
is mostly self-contained. A first course in mathematical statistics, the abil-
ity to use computer for data analysis, and familiarity with calculus and
linear algebra are prerequisites.

Our research on complex model selection was first initiated by Dr. J.
Sunil Rao, who brought up the problem of mixed model selection in the
late 1990s. The collaborative research between Dr. Rao and Dr. Jiming
Jiang has led to the 2008 paper that, for the first time, introduced the
fence methods. Part of the topics presented in the monograph is based on
the Ph.D. dissertation by Dr. Thuan Nguyen, who has made important
contributions to the development of the fence. Other former students who
have contributed, at various points, to the developments include former
Ph.D. students Zhonghua Gu, Jiani Mu, Senke Chen, and Erin Melcon,
and former M.S. students Mei-Chin Lin, Jianyang Zhao, Xi Ai, Xiaoyun
Wang, and Haomiao Meng. In addition, we would like to thank Qui Tran
for initiating the LaTex typesetting for the monograph, and Pete Scully
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and Michael Lin for helping with the design of the front cover. Our thanks
also go to Professors Alan Welsh and Samuel Miiller, who invited the au-
thors to visit their institutes in Australia in 2013 that has led to many
constructive discussions, especially related to the fence methods. We also
thank Professors Welsh and Miiller, Professors Partha Lahiri, Danny Pfef-
fermann, and J. N. K. Rao, and Dr. Long Ngo for their comments, and
encouragement, on the fence methods, either in their published articles and
books or through personal communications.

Jiming Jiang and Thuan Nguyen
Davis, California and Portland, Oregon
March 2015
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Chapter 1

Introduction

On the morning of March 16, 1971, Hirotugu Akaike, as he was taking a
seat on a commuter train, came out with the idea of a connection between
the relative Kullback-Liebler discrepancy and the empirical log-likelihood
function, a procedure that was later named Akaike’s information criterion,
or AIC [Akaike (1973, 1974); see Bozdogan (1994) for the historical note].
The idea has allowed major advances in model selection and related fields.
See, for example, de Leeuw (1992).

To introduce the idea of a new model selection strategy, it is important
to understand the “old” strategies, at the center of which are the informa-
tion criteria. Below we provide a brief review of the criteria. But before we
do this, let us keep in mind one of the best-known quotes in Statistics, or
perhaps all of Science. George Box, one of the most influential statisticians
of the 20th century, once wrote that “essentially, all models are wrong, but
some are useful.” What it means is that, even though there may not exist
a “true” model, in reality, a suitable choice of one may still provide a good
(or, perhaps, the best) approximation, from a practical standpoint.

1.1 The information criteria
Suppose that one wishes to approximate an unknown probability density

function (pdf), g, by a given pdf, f. The Kullback—Leibler (K-L) discrep-
ancy, or information, defined as

Tg ) = / ol log gz dz — / o(z)log f(z) dz, (L1)

provides a measure of lack of approximation. It can be shown, by Jensen’s
inequality, that the K-L information is always nonnegative, and it equals



2 The Fence Methods

zero if and only if f = g a.e. [le, f(z) = g(z) for all x except on a set
of Lebesgue measure zero]. However, K-L information is not a distance
(Exercise 1.1). Note that the first term on the right side of (1.1) does
not depend on f. Therefore, to best approximate g, one needs to find an
f that minimizes — [ g(z)log f(z) dz = —E4{log f(X)}, where E; means
that the expectation is taken with X ~ g. Since we do not know g, the
expectation is not computable. However, suppose that we have independent
observations X1i,..., X, from g. Then we may replace the expectation by
the sample mean, n=' 7" log f(X;), which is an unbiased estimator for
the expectation. In particular, under a parametric model, denoted by M,
the pdf f depends on a vector 8 of parameters, denoted by f = far(-|0ar)-
For example, in a linear regression model, M may correspond to a subset
of predictors, and 0p; the vector of corresponding regression coefficients.
Then the AIC is a two-step procedure. The first step is to find the 0, that
minimizes

_%Zlogfl\/l(X‘iw}\J) (1.2)
i=1

for any given M. Note that (1.2) is simply the negative log-likelihood
function under M. Therefore, the 6y, that minimizes (1.2) is the maximum
likelihood estimator (MLE), denoted by 0. Then, the second step of AIC
is to find the model M that minimizes

1 n .
—T—LZlong(Xin). (1.3)
=1

However, there is a serious drawback in this approach: Expression (1.3) is
no longer an unbiased estimator for —E4{log far(X|0ar)} due to overfitting.
The latter is caused by double-use of the same data—for estimating the
expected log-likelihood and for estimating the parameter vector 6. Akaike
(1973) proposed to rectify this problem by correcting the bias, which is

% ;Eg{log Fu(Xil0ar)} — Eg{log far (X|0ar)}-

He showed that, asymptotically, the bias can be approximated by |M|/n,
where | M| denotes the dimension of M defined as the number of estimated
parameters under M. For example, if M is an ARMA(p, g) model in time
series [e.g., Shumway (1988)], then |M| = p+ ¢+ 1 (the 1 corresponds to
the unknown variance). Thus, a term |M|/n is added to (1.3), leading to
L5 108 fae ity + 2L
n n

=1
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The expression is then multiplied by the factor 2n, which does not depend
and affect the choice of M, to come up with the AIC:

AIC(M) = —2 " log far(Xilfnr) + 2[M]. (1.4)
i=1
In words, the AIC is minus two times the maximized log-likelihood plus
two times the number of estimated parameters.

A number of similar criteria have been proposed since the AIC. These
include the Bayesian information criterion [BIC; Schwarz (1978)], and a
criterion due to Hannan and Quinn (1979). All of these criteria may be
expressed, in a general form, as

GIC(M) = Dys + A M|, (1.5)

where Dy, is a measure of lack-of-fit by the model M and A, is a penalty
for complexity of the model, which may depend on the effective sample size,
n. The measure of lack-of-fit is such that a model of greater complexity fits
better, therefore has a smaller D ar; on the other hand, such a model receives
more penalty for having a larger |M|. The effective sample size is equal to
the sample size, if the samples are i.i.d.; otherwise, it might not be the same
as the sample size (see below). Therefore, criterion (1.5), known as the
generalized information criterion, or GIC [Nishii (1984); Shibata (1984)], is
a trade-off between model fit and model complexity. In particular, the AIC
corresponds to (1.5) with Dy being —2 times the maximized log-likelihood
and A, = 2; the BIC and HQ have the same ]3M, but A\, = logn and
cloglogn, respectively, where ¢ is a constant greater than 2. We consider
another special cases below.

Example 1.1: Hurvich and Tsai (1989) argued that in the case of
the ARMA (p, ¢) model, a better bias correction could be obtained if one
replaces p+ g+ 1 by an asymptotically equivalent quantity, n(p+q+1)/(n—
p — q — 2). This leads to a modified criterion known as AICC. The AICC
corresponds to (1.5) with \,, = 2n/(n —p —q —2). So, if n — oo while the
ranges of p and ¢ are bounded, AICC is asymptotically equivalent to AIC.

One concern about AIC is that it does not lead to consistent model
selection if the dimension of the optimal model is finite. Here, an optimal
model is defined as a correct model with minimum dimension. For example,
suppose that the true underlying model is AR(2); then AR(3) is a correct
model (by letting the coefficient corresponding to tha additional term equal
to zero), but not an optimal model. On the other hand, AR(1) is an
incorrect model, or wrong model [that the true underlying model is AR(2)
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implies that the true coefficient corresponding to the second-order term is
nonzero]. So, if one considers all AR models as candidates, the only optimal
model is AR(2). Furthermore, consistency of model selection is defined as
that the probability of selecting an optimal model goes to 1 as n — oo.

On the other hand, the BIC and HG are consistent model selection
procedures. One may wonder what causes such a difference. The idea
is quite simple, and it has something to do with the choice of A,. The
AIC is not consistent because it has not given enough penalty for complex
models. For example, suppose that the true underlying model is AR(p).
Then AIC tends to choose an order higher than p in selecting the order for
the AR model. This problem is called overfitting. It can be shown that AIC
does not have the other kind of problem, namely, underfitting, meaning
that the procedure tends to select an order less than p. In other words,
asymptotically, AIC is expected to select, at least, a correct model; but the
selected model may not be optimal in that it can be further simplified. For
the same reason, AICC is not consistent.

For a procedure to be consistent, one needs to control both overfitting
and underfitting. Thus, on the one hand, one needs to increase the penalty
A in order to reduce overfitting; on the other hand, one cannot overdo
this; otherwise, the underfitting will again make the procedure inconsistent.
The question then is: What is the “right” amount of penalty? As far as
the consistency is concerned, this is determined by the order of A,. It
turns out that BIC and HG have the right order for A,, that guarantees the
consistency. See, for example, Jiang (2010) for further explanation.

Furthermore, the lack of consistency does not necessarily imply that
AIC is inferior to BIC or HQ, from a practical standpoint. The reason
is that the concept of consistency, as defined above, applies only to the
“ideal” situation, where the true underlying model is of finite dimension,
and is among the candidate models. In practice, however, such an ideal
situation almost never occurs (remember “all models are wrong”). What
one has instead is a collection of candidate models as approximation to the
true underlying model, which is not one of the candidates. For example,
in time series analysis, one may use an AR(p) model as an approximation
to the true underlying model, which may be expressed as AR(c0). In such
a case, it may be argued that the BIC and HQ are inconsistent, while the
AIC is consistent in the sense that the selected order (of the AR model)
tends to infinity as the sample size increases, which approximates the order
of the true model.
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1.2 Difficulties with the information criteria

Although the information criteria are broadly used, difficulties are often
encountered, especially in some non-conventional situations. We discuss a
number of such cases below.

1. The effective sample size. As mentioned, the A, that is involved
in the information criteria, (1.5), may depend on n, which is supposed
to be the effective sample size. For example, if the data are i.i.d., the
effective sample size should be the same as the sample size, because every
new observation provides, in a way, the same amount of new information.
On the other hand, if all the data points are identical, the effective sample
size should be 1, regardless of the number of observations, because every
new observation provides no additional information. Of course, the latter
case is a bit extreme, but there are many practical situations where the
observations are correlated, even though they are not identical. One of those
situations is mixed effects models. We illustrate with a simple example.

Example 1.2: Consider a linear mixed model defined as y;; =Ang B+
ui +v; +ey,t=1,...,my, j =1,...,my, where x;; is a vector of known
covariates, f is a vector of unknown regression coefficients (the fixed effects),
w;, v; are random effects, and e;; is an additional error. It is assumed
that wu;’s, v;’s and e;;’s are independent, and that, for the moment, u; ~
N(0,02), v; ~ N(0,02), e;; ~ N(0,02). It is well-known (e.g., Harville
1977, Miller 1977) that, in this case, the effective sample size for estimating
o2 and o2 is not the total sample size my -ma, but m; and mg, respectively,
for 02 and o2. Now suppose that one wishes to select the fixed covariates,
which are components of z;;, under the assumed model structure, using the
BIC. It is not clear what should be in place of A\,, = logn. For example, it
does not make sense to let n = m;y - mo.

2. The dimension of a model. Not only the effective sample size, the
dimension of a model, |M|, can also cause difficulties. In some cases, such
as the ordinary linear regression, this is simply the number of parameters
under M, but in other situations where nonlinear, adaptive models are fit-
ted, this can be substantially different. Ye (1998) developed the concept of
generalized degrees of freedom (gdf) to track model complexity. A compu-
tational algorithm at heart, the method simply repeats the model fitting
on perturbed values of the response, y (via resampling), and observes how
the fitted values, g, change. The sum of the sensitivities to change across
all of the observations provides an approximation to the model complexity.
It can be shown that, in the case of ordinary linear regression, this results



