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PREFACE

This book is intended for an advanced undergraduate or beginning graduate
course in network theory. At the undergraduate level, for the student with
reasonable facility in mathematics, it can be used following a basic course in
network or circuitanalysis. At the graduate level it should be used during the
first semester of the student’s graduate program.

The University of New Hampshire, as is typical of many small colleges and
universities, has a modest master’s degree program in electrical engineering,
The students enrolled in this. program, often on an extension or part-time
basis, generally have a different purpose or background from students at
larger institutions with sizeable resident programs offering the doctorate.
Also they may have been out of college for several years while working in
industry. In particular their backgrounds in networks and associated
mathematics are often somewhat weak in one way or another. There are at
least two ways by which this deficiency may be corrected:

1. A remedial course can be offered which covers the prerequisite under-
graduate network theory and mathematics. One disadvantage of this
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seems to be that the incoming graduate students are not homogeneous in
their deficiencies. One student may be able to handle Laplace transforms
‘well but know little about matrices; a second student’s background may be
just the reverse. Thus a remedial course, in trying to serve everyone, may
actually not serve anyone properly. A second disadvantage is that the
student’s graduate program is set back a semester. This discourages
many industrial students from pursuing a master’s degree.

2. A first graduate course can be offered that reviews undergraduate network
theory but does it from a different point of view, more rigorously, and in
greater depth. Ideally, the deficient student (assuming his background is
not too weak) erases his deficiency and at the same time develops new
methods and tools of mathematics and network analysis, whereas the
already reasonably prepared student deepens his understanding of network
theory, polishes his math, develops the habit of reading the literature, and
acquires a thesis topic.

This second approach of reviewing in depth and extending has been used
at the University of New Hampshire for several years. Incoming electrical-
engineering graduate students take two required courses in their first semester,
one in field theory and the other in network theory. These courses seek to
bring the student to a reasonable level of proficiency in fields and networks
while at the same time sharpening the mathematical tools he needs for
subsequent graduate courses. Thus partial differential equations, boundary-
value problems, Bessel and “Legendre functions, and conformal trans-
formations are included in the fields course, whereas matrices and
determinants, systems of equations, - linear-graph theory, Laplace and
Fourier transforms, and complex and state variables are stressed in the
networks course.

This book has evolved from notes for this first graduate course in network
theory and has been classroom-tested for three years. Roughly the first half
of the book concentrates on the steady-state analysis of linear networks from
a matrix and topological point of view, and the last half of the book considers
the free and forced behavior of linear networks, using-Laplace and Fourier
transforms and state and complex variables. Chapter 8, on Natural Fre-
quencies, serves as a bridge between these two areas. Sufficient depth is
provided in each section of the book to ensure a student being able to read
related material in the literature intelligently. At the same time, sufficient
review is included to ensure that the deficient student is not overwhelmed.
Chapter problems-are divided into three categories in keeping with this
philosophy: drill (a graduate student does need some), theory and proofs,
and application.

The book is too long to be covered completely in a single semester.
However, there is adequate time in a single semester to cover either one of
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the two major topics in detail while treating the second lightly. Alter-
natively, both major topics can be covered with some thoroughness in one
semester by omitting several special and advanced topics. In terms of
chapter and section coverage, the three possibilities are as follows:

Accent on steady-state analysis, topology, and matrices Chaps. 1 to 7, Secs.
8.2,85,89108.11,9.2,9.3, 105, 10.6, 11.4, and 11.7

Accent on free and forced response, Laplace arsd Fourier transforms, and state
and complex variables Chaps. 1 and 2, Secs. 3.1 to 3.5, 7.1 to 7.4, Chap. 8
(omit 8.5), Chaps. 9 and 10, Chap. 11 (omit 11.4), Chap. 12

Balanced emphasis on each topic Chap. 1 (omit 1.11 and 1.14), Chap. 2
(omit 2.9 and 2.10), Chap. 3 (omit 3.6 to 3.10), Chap. 4 (omit 4.9 to 4.13),
Chap. 5 (omit 5.7 to 5.11), Chap. 7 (omit 7.5 and 7.6), Chap. 8 (omit
8.9 to 8.11), Chap. 9, Chap. 10 (omit 10.2, 10.5 and 10.7), Chap. 11 (omit
11.4 and 11.6 to 11.8), Chap. 12 (omit 12.9 to 12.16)

Of course, the book can be used for a full-year course, topology and
matrices being accented during the first semester and transforms and state
and complex variables during the second. At the graduate level, the in-
structor will probably have time each semester to supplement the book with
topics of his own choosing and interest. At the undergraduate level, the
book itself should suffice.

It is a pleasure to express thanks to the two people who introduced me to
the fascinating business of networks during my Ph.D. days, Dr. Dov Hazony
and Dr. James D. Schoeffier, of Case Institute of Technology. I am also
indebted to Prof. Donald W. Melvin, of the University of New Hampshire,
who classroom-tested and commented most constructively on various
sections of the book. To Mrs. Barbara Keating, who typed the early chap-
ters, and to Mrs. Mary Ann Stickney, who came along at just the right time
and devoted herself to the typing of the later chapters and the preparation of
the final manuscript, I acknowledge a sincere debt of gratitude. Finally, to
my graduate students, who suffered through uncorrected ditto copy, my
appreciation for suggestions and corrections.

J. B. MURDOCH
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MATRICES AND DETERMINANTS

1.1 INTRODUCTION

A linear system is one that can be characterized by a set of linear differential
or algebraic equations. For a linear electric network, these equations are the
Kirchhoff law equations resulting from a loop or node analysis of the net-
work. The reader is assumed to have a working knowiedge of the formula-
tion and solution of such equations. Specifically, it is assumed that he can
write Kirchhoff’s voltage law (KVL) equations arcund ihe various loops of a
network and Kirchhoff’s current law (KCL) equations at the various nodes
and, presuming the right number of equations has been written, that he can
solve for the unknown currents or voltages using determinants and Cramer’s
rule.

Simple networks are easily analyzed in the manner just described. Ques-
tions about the number of necessary equations seldom arise. However, as
the complexity of the network increases, a more systematic approach is
needed. It is the purpose of the first several chapters to develop such an
approach based on linear graph theory. Matrices and determinants are
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particularly useful mathematical tools in this development. We therefore
devote the first chapter to their study.

The reader is assumed to have some familiarity with matrices and deter-
minants. Qur purpose here is to review their properties, develop a facility
in and understanding of their use, and emphasize those features and special
forms which are of particular importance in the study of linear graph theory.

1.2 DEFINITION OF A MATRIX

Consider a set of m linear algebraic equations in » unknowns

Xy + QiaXe + 00 G X, =W
Xy + GgeXp + 0 * g X, = Yo

(1.2.1)
amlxl + a'mzxz + Tt + amnxn :ym

We ask: How can these equations be written more concisely? To answer
the question, we rewrite Eq. (1.2.1) in the matrix form

T _ylﬁ
ay G @, || X Ve
Gy Qg s, _ (12.2)
Am1 am2 amn
Xn_| L Vm_|
which can be shortened to
AX = (1.2.3)

Equations (1.2.2) and (1.2.3) are definitions. Each is a shorthand form of
Eq. (1.2.1). Matrix 4 is an ordered array of coefficients which transforms
a set of n variables in x into a set of m variables in y, as prescribed by Eq.
(1.2.1). 1t has m rows and # columns and is said to be of order m x n.

Similarly X and Y are column matrices of order n X 1 and m x 1, respec-
tively.

1.3 INDEX NOTATION

Thus far we have represented a matrix either by a single capital letter or by a
bracketed array of single- or double-subscripted coefficients. A third, very
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useful representation is provided by index notation. Let

A = [a;]
X = [x,] (1.3.1)
Y={[yl

In this notation, a;; is the element in the ith row and jth column of 4, and
[a;;] is the matrix composed of these elements. Similarly x, is the element
in the ith row of the matrix X (there being only one column), and likewise
for y..

The definitions of Eq. (1.3.1) can be substituted into Eq. (1.2.3) to obtain
la;;1[x.] = [y:] (1.3.2)

Equation (1.3.2) makes little sense in terms of the instructions provided by
the indices. The index i is repeated on the left of Eq. (1.3.2) but not on the
right; there is nothing in the notation to guide us in multiplying the two
matrices on the left together.

To make Eq. (1.3.2) meaningful, let us write Eq. (1.2.1) as a summation
using index notation

Dapn=y; i=12,...,m (1.3.3)
k=1

For each value of 7, one equation of Eq. (1.2.1) is developed as k proceeds

from 1 through n.  Putting Eq. (1.3.3) in matrix form yields the entire set of
equations

[k;a,.kx,,} = .y (1.3.4)

The brackets in Eq. (1.3.4) tell us to let i take on all its permitted values from
1 through m.

The repeated subscript k in Egs. (1.3.3) and (1.3.4) is known as a dummy
index, indicating a summation over the n columns of 4 and rows of X.
Clearly the number of columns in the first matrix and rows in the second
matrix *must be the same for this matrix product to be defined. Matrices
satisfying this requirement are said to be conformable in the order given.

There is no reason to retain the summation sign in Eq. (1.3.4) if we are
willing to adopt the convention that a repeated index indicates a summation.
(In the few cases where a repeated index does not indicate a summation we
shall use a Greek letter for the repeated index.) Also, the ranges of i and k

are customarily omitted [as they are in Eq. (1.2.3)]. With these changes,
Eq. (1.3.4) becomes

m

i=1

laaxd = [y (1.3.5)
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Let us now return to our difficulties with Eq. (1.3.2) and change this
equation to read

(aqllxd = [yl (1.3.6)

The form in Eq. (1.3.6) looks much better. Formally, we have replaced the
second (column) index of the first matrix and the first (row) index of the
second matrix by a dummy summation index (in this case k).

Now comparing Egs. (1.3.5) and (1.3.6), we obtain

[aa][xi] = [anexi] (1.3.7)

which shows, in compact index-notation form, exactly what is meant by the
product of two matrices.

{4 MULTIPLICATION

To develop further what is meant by matrix multiplication and show how

several ‘matrices can be multiplied together (cascaded), let B be an n x p
matrix given by '

B = [b,] (1.4.1)
and let Zbeap x| column matrix given by
Z = [z] (1.4.2)

Now let the n variables in x in Eq. (1.2.1) be defined by n equations in the
p variables in z by

Ballzli= [x/] or BZ =X (1.4.3)

where / is a dummy summation index like k in Eq. (1.3.2) but runs from 1

through p. Substituting Eq. (1.4.3), with i replaced by k, into Eq. (1.3.6)
yields

lagl(bullz;] = [y (1.4.4)
which, according to Eq. (1.3.7), can be written as
([@abrllz] = [y.] (1.4.5)

On the left in Eqs. (1.4.4) and (1.4.5) there are two dummy summation
indices, namely, k and /, and there is one nonrepeated index . The summa-

tion indices do not appear on the right; the nonrepeated index does. This is
always the case.

Now define

[ea) = [aubi] (1.4.6)
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which yields
[callz] = [y} ‘ (1.4.7)

From Eq. (1.4.6), we can formulate a general procedure for taking a matrix
product AB. First 4 and B must be conformable. Here 4 is an m X n
matrix and B is an n X p matrix. They are conformable, and their product
is an m X p matrix. Second, each entry in the C matrix is formed by letting
k take on all values from 1 through n, with i and / fixed, and summing the
products. For example,

C1a = Qybia + Giabas + * - + Gypbys (1.4.83)

Example 1.1 Let the matrices 4, B, Z, and Y-in Eq. (1.4.4) be given by

by b
A= l:au au] B~ [ 11 n] z— [21:] Y = l:)’n:]
i, dss byy by, 23 Y2
We can write any of the y,’s by inspection using index notation and Eq. (1.4.4). For

example, to write y;, we note that i = 2 and k and / each take on the values 1 and 2.
Thus

Y2 = aubnz,
= aybuzi + @010133s + 8390212, + G2sbss2,

Note that by using index notation, we did not have to perform the multiplication piece-
meal, i.e., by first obtaining 4B and then 4BZ, or BZ and then ABZ. This can be an
advantage when several matrices are to be multiplied together.

Example 1.2 The two networks shown in Fig. 1.1 are to be cascaded as indicated by the
dashed lines. We wish to form the overall network matrix.
The voltage-current equationst for each network are

e, = aey — bi, es =da'e, — b'i,
i, = cey — di, is = c'eqg — d'i,
When the networks are cascaded,
ey = €y and iy = —i;
Hence the equations for the second network become
es = a'e, — b'i,
—iyg =Cce, — d'i,

t The equations are given in terms of the chain parameters of each network. Two-port
network parameters are discussed in Chap. 3.

] N
ey |abecd ;z ;’3 a¥ca €4
Fig. 1.1 Cascaded netwarks.




