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PREFACE

This book arose out of a number of different contexts, and numerous persons
have contributed to its conception and development.

It had its origin in a project initiated jointly with the IBM Cambridge Scien-
tific Center, particularly with Dr. Rhett Tsao, then of that Center. We are grateful
to Mr. Norman Rasmussen, Manager of the IBM Scientific Center Complex, for his
initial support.

The work is being carried on at Brown University with generous support from
the Office of Computing Actiyities of the National Science Foundation (grants GJ-174
and GJ-710); we are grateful to Dr. John Lehmann of this Office for his interest and
encouragement. Professors Donald McClure and Richard Vitale of the Division of
Applied Mathematics at Brown University contributed greatly to the project and taught
courses in its spirit. We are indebted to them and to Dr. Tore Da;enius of the
University of Stockholm for helpful criticisms of the manuscript.

The final stimulus to the book's completion came from an invitation to teach a
course at the IBM European Systems Research Institute at Geneva. We are grateful to
Dr. J.F. Blackburn, Director of the Institute, fof his invitation, and to him and
his wife Beverley for their hospitality.

We are greatly indebted to Mrs. Katrina Avery for her splendid secretarial and

editorial work on the manuscript.



INTRODUCTION
The purpose of this book is to present an attitude. It has been designed with
the aim of making students and perhaps also faculty aware of some of the consequences

of modern computing technology for probability theory and mathematical statistics.

Not only the increased speed and memory of modern computers are relevant here; of at
least equal importance to our subject are the versatile input-output devices and the
existence of interactive time-sharing systems and of powerful programming languages.
Of the last-mentioned, we have found APL moét useful for our purposes.

The work described in these notes was initiated because we felt the time was

ripe for a systematic exploitation of modern computing techniques in mathematical

~statistics and applied probability. Model building, for instance in applied probabil-
ity, is very different today from what it wasriﬁrﬁngéohputer days, although this
change has not yet fully penetrated to the textbook level. This course is being pre-
sented to remedy this situation to some degree; through it, we hope, students will
become aware of how computers have increased their freedom of choice of mathematical
models and liberated them from the restraints imposed by tr;ditional mathematical
techniques.

The project which led to this set of lecture notes is a continuation, although
in different form, of an activity organized several years ago at the.University of
Stockholm. The activity was intended as a complement to the already existing program
for training graduate students in mathematical statistics and operations research.

It was felt that the students received a well-balanced education in mathematical
theory but that something else was lacking: they were not trained for solving real-
life problems in raw and unpolished form (in which they usually appear), far removed
from that of pure and idealized textbook problems.. In particular, little attention
was given to the first, difficult stages of problem solving, namely the building of
models, the collection of data, and the crucial relation between the mathematical,
formal apparatus and the real-life phenomena under study.

To give students an opportunity -for acquiring a more realistic orientation and
critical attitude towards data, they were exposed to real problems chosen from many

fields in industry, government and research. With the help of advice from a teacher



or from older and more experienced students, they Qereﬂasﬁed td:Study a problem, forj
mulate their own ﬁoﬁél, scrutinize data and pres?pt an‘analysi§-fo the person or
agency from whom the problem had originated. The results wére later diécussed in
laboratory sessions, often before the analysis'was-coﬁf;eted; in order to get sug-
gestions and ideas.

It became obvious in:the course of this experiment that a mafor defect in the
conventional training of graduate students was the lack of‘attentidﬁ paid to the role
of computers in the applications of mathematical statistics. Students have often to.
pass through a more or less painful stage in which they reorient themselves in order
te learn what is computationally feasible as distinct from apalytically possible. It
is desirable that this transition be made easier, quicker and more complete. Although
most students will have had some exposure to the computer, they may be inexperienced
in its use in, say, applied probability. This will affect their ability to formulate
realistic models, forcing them to choose analytically tractable models rather than
those which best fit the problem. .

The purpose of the present project is to equip students in probability and stat-
istics better for work on real problems. The ehphasis in the latter effort is on
model building as influenced by computer science.

A growing number of practicing statisticians are today'awére of the neéd to ex-
ploit more fully the capability of computers in statistics. This. is particularly
true in applied statistics, for ipstance in data analysis, where some research wovkevé
have emphasized this for several years. Less attention has been paid to the computa-
tional side of probability theory, although the need for a computatiénal reopientation
also exists in this subject. We tﬁerefore chose to concentrate our efforts on

probability theory and applied probability as well as on statistics.

We divided our work into several chapters. Each chapter represents some eoncepf
or technique or relation for which a sufficiently rich mathematical structure has been
develaﬁﬁd and in which, at the same time, the impact of computef science can be ex-
pected to be substantial. The chapte®s togethe? will cover only a part of mathemat-

ical statistics, although, we hope, an important one. We are. particularly interested

in areas in which the interaction between the analytical apd computational approach



is strong. This will usually only be the case where the analytical technique has
been extended so far that further extension seems possible or worthwhile only through
computer use, and makes it necessary that students possess a certain degree of math-
ematical sophistication. A course designed in such a way should be distinguished
from one aiming only at teaching the computer implementation of standard statistical
techniques and the writing of statistical programs. A course of the latter type is
certainly useful and necessary, but the present project is more ambitious in scope
and perhaps also more difficult to accomplish in the classroom. Little, in fact,
seems to have been done in the direction described here. We had originally hoped to
be able to use some already developed material, but there is disappointingly little
available.

The prerequisites for the course are familiarity with the elements of probability
_ and statistics, calculus and linear algebra. It will be assumed that
students have some programming experience; most computing in the course will be based
on APL which is, from the point of view of our computing tasks, by far the most suit-
able currently available interactive programming language.

The APL progréms in the book should not be interpreted as forming a comprehen-
sive, debugged program library (see section 7.1 in this context). They are presented
only to illustrate our approach to computational probability and statistics and un-~
doubtedly contain several mistakes.

Since the degree of mathematical sophistication is expected to vary a good deal
among students, more advanced sections are starred, and it is suggested that they be
reaa only by those.who feel they have sufficient mathematical background. These sec-
tions should be discussed in class, without detailed proofs being given; instead,
.their.interpretatioﬂ and practical consequences should be discussed by the lecturer.

We strongly recommend that students Se encouraged to complete the assignments
to help them in the development of a real understanding of the material. The extent
and size of the assignmeﬂts will depend in part upon the computational facilities
available during the course.

For further reading, and to find more advanced developments of some of the sub-

jects covered here, we recommend the series of reports published under the NSF-



sponsored "Computational Probability and Statistics" project at Brown University,

the titles of which are listed in the References.

The curves in the book were produced by a TSP plotting system on-line with a

DATEL terminal, operating under APL/360.
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CHAPTER 1:

RANDOMNESS

1.1 Fundamehtalé;

The.concepf of randomness is fundamental in probability theory and statistics,
but also most’cqntrovérsial. “Aﬁoné the many interpretations of terms like probabil-
iéy, likelihood, e%ct..we shall consider two in thié course: the usual frequency
approach (in this chépter) and the Bayesian one (in chapter 6: "Decision problems").

One should actually not speak of a single frequency approach, since there are
several variations of it. That most commonly adopted in the textbook literature is
to start from the idea 6f a random experiment and carry out the mathematical formal-
izafion as follows.

Starting from a sample space X that may be completely unstructuéed, one views
the outcome of the random experiment E as a realization of a stochastic variable x
described by a prﬁbability measure P given on X. The pure mathematician is wont to
phrase this as foilows: the value of the probability P(S) should be defined for any
subset SCX belonging to a well-defined o-algebra of subsets of the sample space.
(We shall not, however, go into the measure-theoretical aspects in this course.)
This is the mathematical model: the transition to phenomena of the real world is

effected through a heuristic principle: the frequency interpretation of probabilities.

If the experiment E is repeated n times independently and under equal conditions,

then the relative frequency f/n should be close to P(S), where f is the absolute

frequency (number of times we'get a value xS), if the sample size, n, is large

enough.

While the idea behind this ancient principle is quite appealing, the above for-
mulation is not quite clear on three points: »

a) what is meant by "independently"?

b) how should one interpret the phrase "under.equal conditions"?

c) how large is "large enough"?

It has often been argued that this sort of vagueness must always be expected
when any mathematical model is interpreted in terms of the physical world. For

example, when we use Euclidean plane geometry to describe and analyze measurements

1



of léngth, angles and areas, we meet the same sort of difficulty when trying to
relate notions like points, lines and areas to physical data. We continue to use the
model only as long as no logical inconsistency is found or no serious discrepancy
between model and data has been established empirically. This pragmatic attitude has
been widely accepted, but doubts have been voiced by critics who claim that a more
profound anaiysis is possible. To understand better how this can be done we shall
take a look at the manner in which we dctually use the model.

Simplifying drastically, we could say that from the above point of view prob-
ability and mathematical statistics are the study of bounded measures. While such a
statement would undoubtedly describe much research activity in these fields quite
accurately, it is a superficial point of view and of little help when we want to dis-
cuss the relation between theory and its application.

Randomness enters on three different levels. The first can be exemplified by a
set of measurements of some physical constant like the speed of light. Here we would
think of the variation encountered among the data as caused by imperfections in the
experimental arrangement, imperfections which could, at least in principle, be elim-
inated or reduced by building better equipment or using a more efficient design for
the experiment. We describe this variation in probabilistic terms, but probability
plays here only-a marginal role. On the second level randomness plays a more funda-
mental role. Assume that we measure the toxicity of a drug and use guinea pigs in
the experiment. We would hﬁve to considér the apparent randomness caused by the
biological variation in the population of animals used. We would always expect such
variation, although its form and extent might vary between different populations. In
a well-designed experiment we would like to be able to make precise statements about
this variation; to eliminate it entirely does not seem possible. Most of experimental
statistics falls into this category. To illustrate the third level, let us think of
a Monte Carlo experiment in which we try to find the properties of a statistical
technique by applying it to artificial data and studying the result, or in which a
probabilistic limit theorem is examined by simulating it for large samples. Here we
need randomness, and try to generate data in some way so that they have properties we
would expect from random sequences. Another example bringing out this feature perhaps
even more clearly occurs in the design of experiments when we inject randomness

2



intentionally into the experimental arrangement. Here randomness is desirable

and necessary.

In recent years simulation of probabilistic phenomena has become a useful and
often-applied tool, especially in the area of operations research. Almost all of
this work is being done on computers and it is obvious that this fact has greatly

influenced our interest in computer. generation of random sequences. There is a close

relation between certain results in analytical probability theory, some of which have
been known for many years, and the more algorithmically-ériented computer studies

carried out recently. This relation will be examined in the following sections.

1.2 Random Number Generation.

Let us now turn to the guestion of how one could generate randqmness on a
computer. .

We shall try to construct an algorithm that generates numbers Xy9¥XpsXgseee in
the interval (0,1) such that the sequence {xi} behaves as one would expect from a
sample from the rectangular (uniform) distribution over the same interval (0,1).

What properties shéuld we ask for? Let us mention a few. We know from the law

of large numbers that the average

(1.2.1)

X
[
S|~
el
p?‘

should tend in probability to 1/2 and we would require x td be close to 1/2 in some
sense that has to be left somewhat vague at present. Similarly, the empirical

variance

(1.2.2) s =% (xi-§)2

(el =

should tend to 1/12 in probability. We can think of other similar properties; let us
mention some others. We certainly want the sample (xl,xz,...,xn) to have an approx-
imétely uniform distribution over (0,1), e.g. in the following sense. We divide the
interval into the m intervals Iv = !%iy %0, v =1,2,...,m, where m<<n, and call ﬁv
the number of 3 that fall in Iv; then we would ekpect Nv/n to be close to 1/m for

V= 1,2,...,m.

If we want the algorithm to have a simple form and still generate long (or even



infinite) sequences, it is almost necessary that it be recursive. The simplest would

be to set

(1.2.3) Xi = f(xi) . i=1,2,...

where f is a predetermined function taking values in (0,1) (one could also let f

depend on more than one of the x's preceding x. ,). It must also be simple to com-

i+l
pute, since (1.2.3) will be repeated many times. Starting from a value-xie(o,l) and
applying (1.2.3) recursively, we get a sequence of unlimited length.

To start with, let us choose f as
- » s
(1.2.4) F(x) = 3+ 8(x - 3) 3

it will soon become obvious why we have. chosen a function of this form (which is

graphed in figure 1).

Figure 1.

Assignment: Write a program in APL to generate a series of length n. Calculate x,
sﬁ and the values of Nv/“ for- some suitable value of n. Work with small values of
n, say 20.

Let us run the program and note what happens.

%awﬁtMcRaUnmwm@mdmwﬁmonwdmtMaMwemmh,hé

us use
(1.2.5) ' f(x) = {x + a} ,

starting with Xy = 0, where a is some fixed number in (0,1). Here {x} stands for
the fractional part of x or, in APL, x-lx.
Let us now write the same program as before and execute it at the terminal.

What behavior do we observe? What about special values of a?



Let us now do the same with
(1.2.8) £f(x) = {2x}

Let us also try larger values of n, say 100, and see what happens then. We may also

any natural number, or by more

be interested in replacing (1.2.6) by f(x) = {Mx}, M

"chaotic" functions, such as

| 2x 0<x<3
(1.2.7) fx)= g2-3% f<x<2
3x -2 %ixil

There may be other suitable choices of £ with which to run your program. What can we

say about the behavior of the sequence generated?

Figure 2

The reason why (1.2.4) failed is obvious. Indeed, by looking at the graph of
the function plotted in figure 2, it is clear that if 1/2 < x; <1 then 1/2 < x; ., <
X: s and that the sequence converges to 1/2; the same is tﬁﬁe if 0 < X < 1/2. The
three values x =.0, 1/2, 1 play the role of fixed points: the middle one is stable
and the other two are unstable. We would, of course, like to avoid fixed points.
The function is not sufficiently irregular to generate thé chaotic behavior we want.
Actually, for any f that is continuous and maps [0,1] onto itself thergxis at least
one fixed point. This leads us to introduce é&scéntinuous functions.

Consider instead the function (1.2.5); it has a discontinuity at x = 1-a (plot
the function!). The following beautiful result due to Herman Weyl illustrates the

situation well.



Theorem. For any irrational a € (0,1) the sequence X} 9XpsXgseee with Xy = {ia} is

equidistributed over (C,1) (this relates to additive congruence generators; see

below).

Vote: by equidistribution in this context - for sequences of numbers and not for sto-
chastic variables - is meant the following. For any a,b with 0. < a <b < 1 we should

have

(1.2.8) 1lim [%-x number {xi: a:;ifp; i=1,2,,..,n}]1 =b - a
n-w

*Proof of theorem (asterisks denote the beginning and end of an advanced section).

Consider the trigonometric sums

n ez n T1s
(1.2.9) 1 =1y friklial .1y 2rikja
n . n .
J=1 J=1
We have T0 = 1 and for k # 0 by sumning the geometric series
1 1

Since a is irrational, the value ka is not an integer, so that sin nka # 0. We get

from (1.2.10)

(1.2.11) lim Tk =0
Do
This implies that for any trigonometric polynomial P(x) = i ake21rlkx we have
1
N
(1.2.12) lim = § P(x,) = f P(x) dx
ne =1 J 0

Since any continuous function on (0,1) can be uniformly approximated by trigonometric
polynomials, (1.2.12) holds when P is an arbitrary continuous function. Introduce,
for € > 0, the two stepwise'linear functions £ and £ (see figure 3). They are con-

+

N\
/

a-e a b b+e 1
-
| - i A 1 b 4
0 a a+te b-e b 1
Figure 3



tinuous so that (1.2.12) holds for them. But the quantity in (1.2.8) is included
between the two limits we just got; this proves the theorem.*

Note: this theorem does not tell us for which values of x, we get equidistribution,
only that equidistribution is the typical case.

There is also the following result:
t

Theorem. For almost all initial values X, € (0,1), the sequence generated by (1.2.6)

is equidistributed (this relates to multiplicative congruence generators; see below).

*Proof. The mapping Tx, where
(1.2.13) T: x + {2x}

of (0,1) onto itself preserves Lebesgue measure. Indeed, let f(x) be an arbitrary

periodic (with period 1) bounded and measurable function. Then
1

(1.2.14) f £(Tx)dx = f £(2x)dx = -H £(y)dy = f £(y)dy

o 0 :
Taking f as the indicator function of an arbitrary subinterval of (0,1) proves that
T is measure-preserving in the sense that m(T-lS) = m(S) for any Borel set S€[0,1].
This implies ,that if % is given a uniform distribution éver (0,1) the sequence X5
(now consisting of stochastic variables) forms a stationar& stochastic process and

we can apply Birkhoff's individual ergodic theorem (see ref. 13, p. 105) and find

that for any geLl(O,l)

. " 1 n -
(1.2.15) : g = lim = Z glx )

exists for almost all choices of Xy It remains only to prove that the limit é

is essentially constant; it must then be equal to
1

(1.2.16) g = f g(x)dx (almost certainly)
0

which would prove the equidistribution. To prove that g is constant it is enough to

prove metric transitivity (ergodicity) of T (see ref. 13, p. 105). Let I be an in-

variant set with the indicator function I(x):

(1.2.17) I(Tx) = 1({2x}) = I(x), all xe(0,1)



