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The goal of this book is to present the
Preface basic facts of functional analysis in a form
suitable for engineers, scientists, and applied
mathematicians. Although the Definition—
Theorem-Proof format of mathematics is
used, careful attention is given to motivation
of the material covered and many illustrative
examples are presented.

The text can be used by students with
various levels of preparation. However, the
typical student is probably a first-year grad-
uate student in engineering, one of the for-
mal sciences, or mathematics. It is also pos-
sible to use this book as a text for a
senior-level course. In order to facilitate
students with varying backgrounds, a num-
ber of appendices covering useful mathe-
matical topics have been included. Moreover,
there has also been an attempt to make the
pace in the beginning more gradual than
that of later chapters.

The first five chapters are concerned with
the “geometry” of normed linear spaces. The
basic approach is to “‘disassemble” this geo-
metric structure first, study the pieces, then
reassemble and study the whole geometry.
The pieces that result from this disassembly
are set-theoretic, topological, and algebraic
structures. Hence, Chapter 2 covers the ap-
propriate set theory; Chapter 3 treats topo-
logical structure, in particular, metric spaces;
and Chapter 4 handles algebraic structure,
in particular, linear spaces. The reassembly
takes place in Chapter 5 where normed
linear spaces are studied. The main topic of
this chapter is the geometry of Hilbert
spaces.

The authors have found that the ma-
terial covered in these first five chapters can
be presented in a one-semester beginning
graduate course. Indeed, the authors have
done so a number of times in engineering
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and mathematics departments at a number of universities in the United States,
Europe, and South America. Needless to say, the mode of presentation depends
upon the audience. For certain audiences, motivation and examples are empha-
sized while proofs are only highlighted. For others, the converse is the case. An
attempt has been made to make the book suitable for both modes of presenta-
tion. Moreover, there is material in the large collection of exercises appropriate
for each type of audience.

Chapters 6 and 7 take the geometric structure developed in the first five
chapters and apply it to the geometric analysis of linear operators. Chapter 6
covers the Spectral Theorem (the eigenvalue-eigenvector representation) for
compact operators. Chapter 7 extends this material to certain discontinuous
operators, in particular it treats those operators with compact resolvents. These
two chapters also contain many illustrative examples.

Many chapters are divided into parts (Part A, Part B, and so forth). Part A
contains basic introductory concepts. The subsequent parts of each chapter
develop additional concepts and special topics. Thus, if a relatively quick intro-
duction is desired, Part A can be covered first and material from the rest of the
chapter can be added as needed.

For the person who is interested in getting to the spectral theory of linear
operators as soon as possible it is recommended that he cover Part A of Chapters
3 and 4, Sections 1-8, 12-24 of Chapter 5, and then Chapters 6 and 7.

There is an important problem concerning integration theory. Although
integration theory is not needed to understand the basic material covered, there
are certain examples that do make refe-ence to the Lebesgue integral and prob-
ability spaces. This problem can be handled in at least two ways. First, it can
be more or less ignored. That is, the student can be told that there is such a
thing as a Lebesgue integral and what its relation to the, presumably familiar,
Riemann integral is. Probability spaces can be “glossed” over in the same way.
The other way to approach the problem is to use the appendices. Appendix D
gives an introduction to Lebesgue integration theory, and Appendix E presents
the basic facts about probability spaces.

Each chapter is denoted by a numeral; that is, Chapter 3. The tenth section
of the third chapter is denoted Section 3.10. However within Chapter 3, the 3
may be dropped and Section 10 used instead of Section 3.10. Theorem 5.5.4
(or Definition 5.5.4, Lemma 5.5.4, Corollary 5.5.4) refers to the fourth theorem
in Section 5 of Chapter 5.

The notation “[J” is used to denote the end of proofs and examples. This
allows the proof or examples to be skimmed on first reading.

The authors would like to thank a number of people who have aided in the
development of this book. First, there are the students at various universities
who have taken courses from one or the other of us based upon manuscript
versions. Their suggestions have been invaluable. Next, we would like to thank
colleagues who have aided us in various ways: H. Antosiewicz, M. Damborg,
K. Irani, G. Kallianpur, W. Kaplan, W. Littman, W. Miller, R. Perret, W. Porter,
T. Pitcher, P. Rejto, Y. Sibuya, H. van Nauta Lemke, and H. Weinberger. We
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especially want to thank F. Beutler for the many suggestions that arose out of
his classroom use of the manuscript. Finally, we would like to thank the many
secretaries at various universities who have helped in the preparation of the manu-
script. In particular, we would like to thank the secretarial staffs of the Depart-
ment of Electrical Engineering at the University of Michigan and the School
of Mathematics at the University of Minnesota.

Ann Arbor Arch W. Naylor
Minneapolis George R. Sell
1971

Preface to the Second Edition

We are very pleased that the new edition is being published and we are
grateful to Springer-Verlag for doing this. The number of inquiries that we
received each year made us believe that a new edition would be welcomed. We
hope we were right, and we hope that it will be of use to our colleagues and their
students.

We further hope, probably unrealistically, that we have corrected all errors of
the first edition.

Ann Arbor Arch W. Naylor

Minneapolis George R. Sell
1982
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1. BLACK BOXES

A great number of the mathematical problems of engineering and science
can be fruitfully viewed as what are often referred to as *“black box problems.”

el

One puts an “input” into a black box (Figure 1.1.1), the black box hums and

Input > Output
‘ Black Box

Figure 1.1.1.

whirls inside, and out comes an “‘ output.” Black box problems are questions about
what black boxes do. The following are a few examples:

(1) If a black box is in fact an amplifier, questions can be asked about band-
width, unit step response, distortion, and so on.

(2) Givenanautonomousdifferentialequation x = f(x),theinitial state (thatis,
the initial conditions) may be viewed as the input and the resulting motion (or
solution) may be viewed as the output. Many questions can be asked about the
behavior of such equations; for example, questions about asymptotic growth,
stability, periodicity, and so on.

(3) The input data to a digital computer is a string of symbols and its corres-
ponding output is another string of symbols. The program determines what this
black box does.

(4) Let S={s,5,,...,58, denote the state set for a Markov chain and
plk), k=0,1,2,..., denote the probability distribution over S at time k. Further
let A denote the matrix of transition probabilities; that is,

plk+1)=Aplk) k=0,1,2,....

One can view the initial probability distribution p(0) as an input and the resulting
sequence p(1), p(2), ... as the output. Or one can view p(k) as an input and the
resulting p(k + 1) as an output.

(5) In the case of a plucked string, the initial stretched position of the string
before release can be viewed as an input and the resulting string vibration can be
viewed as an output.

2



1.1. BLACK BOXES 3

(6) In a quantum-mechanical system, the wave function (x, ) may be
viewed as an input and the integral | |Y(x, 1)|* dx or the partial derivative dy/ot
may be viewed as the output.

Needless to say, there is no end to the problems that can be formulated as black
box problems.

As far as this book is concerned, the most important aspects of black box
problems are that, once surface detail is removed, seemingly different problems
become similar to one another and that certain patterns repeatedly appear in
solution methods. For example, one does not treat linear time-invariant network
problems as separate unrelated problems, rather one approaches them as a unified
class of closely related problems. Similarly, it was noticed long ago that at a certain
level of abstraction the matrix equation

N a, ayp Xq
Ya | _ X2
Yn Ay Qun Xn

and the integral equation

T
y(t) = fo k(t, D)x()dt  te[0,T]

describe similar mathematical situations. Another way to say this is that these
problems have similar mathematical structures.

The black box is thus an ““ operator ” which transforms an input into an output,
It is these operators that form the subject matter of our book. What we want to
do, then, is recognize and study the essential mathematical structure of these
operators. Although there are many kinds of operators, our goal here is to study
those that can, once unessential details are removed, be viewed as transformations
from normed linear spaces into normed linear spaces. This allows us to treat in a
unified manner, matrix equations, integral equations, differential equations,
difference equations, and random processes.

The real Euclidean plane is an example of a normed linear space. N-dimensional
Euclidean space is another. Certain sequence spaces and function spaces are also
examples. There are many other examples as we shall see later. For us the most
important fact about normed linear spaces is that they all have a geometric struc-
ture that is very similar to ordinary two- or three-dimensional Euclidean geometry.
This is particularly true for Hilbert spaces, a special subclass of normed linear
spaces. This geometric structure is the unifying theme of the material presented in
this book.

The first part (Chapters 2, 3, 4, and 5) of this book is devoted to a detailed
study of this geometric structure. It turns out that the geometric structure of a
normed linear space really involves three different kinds of structure: set-theoretic,
topological, and algebraic. We illustrate this subdivision in the next section with
the aid of a familiar example: the plane.
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2. STRUCTURE OF THE PLANE

The real Euclidean plane is a classic example of a normed linear space. As
we have noted, it has set-theoretic, topological, and algebraic structure.

Set-Theoretic Structure

Before anything else, the plane is a set. In particular, it is the set of all ordered
pairs of real numbers x = (x,, x,). Denote this set by R?, and note that (7,1) and
(1,7) are different points in this set. We refer to this set as the underlying set.

Topological Structure

The type of topological structure that we are interested in here has to do
with the concept of closeness. In particular, the Euclidean distance d between any
two points x = (xy,x,) and y = (y,),) is

d(x,y) = {|x; = nl* + |xz — y,?}'/2

The set R? equipped with this distance function is an example of what is called a
metric space.

Algebraic Structure

The type of algebraic structure that we are interested in here is addition and
scalar multiplication of points (vectors) in the plane. Thus, if x = (x;,x,) and
¥ = (¥1,2), then

X+ y=(x +y, X2+ »2).

And if « is any real number,
ox = (ox;,0%5).

With this structure on the set R* we have a linear space.

Combined Topological and Algebraic Structure

It is possible to have metric spaces that are not linear spaces and vice versa.
As we have just seen here, it is also possible to have both a topological and an
algebraic structure on the same underlying set. It happens very often that the
topological and algebraic structure are blended together. In the case of the plane,
and normed linear spaces in general, this blending is accomplished by means of
the norm or length of vectors in the plane. If x = (x,x,), then the norm of x is
given by
xll = Oy + x,%)"2 (1.2.1)
It follows that

d(x,y) = ||x —y|
and

lloex(| = fed] [l
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where o is any scalar. Neither of the above two expressions would make sense if
we did not have algebraic structure. We will see later that addition and scalar
multiplication have continuity properties which are also a result of the blending
of topological and algebraic structure.

Geometric Structure

When we put all the pieces together we are back to the plane with its familiar
geometry. Some geometric facts are the result of the presence of topological
structure only, some the result of the presence of algebraic structure only, and some
involve both. We shall see which are which in the following four chapters.

Before we go on, it should be noted that the normin (1.2.1) has some additional
structure, namely that it is generated by an inner product. The inner product
between the two vectors x and y in R? is given by

(x,9) = x; 1 + X2

Thus |lx|| = (x,x)"/2. It should be noted here that there are other norms one can
prescribe on R? that are not generated by inner products. We shall see in Chapter

5 that the geometric structure of spaces with inner products is much richer than
those without.

3. MATHEMATICAL MODELING

Since successful application of mathematics depends on successful mathe-
matical modeling, it is worthwhile to say a few words about mathematical modeling.
Roughly speaking, it is the formulation of a mathematical system whose mathe-
matical behavior models certain aspects of a real system. For example, Ohm’s
law e = Ri gives a mathematical model for the electrical behavior of a resistor.

The resistor can be used to illustrate the main problem of mathematical
modeling. In order to formulate a mathematical model which models many aspects
of a real system, one is usually led to a mathematical model of great complexity
and such models are often mathematically intractable. For example, to model the
high frequency as well as the high voltage behavior of our resistor could require a
mathematical model involving nonlinear partial differential equations. Such
equations are notoriously difficult. On the other hand, if one allows simple mathe-
matical models only, one often ends up with a mathematical model which does not
yield a sufficiently accurate or detailed description of the real system’s behavior.
For example, treating a long telephone or power line as a resistor without induc-
tance and capacitance leads to a simple, yet usually inadequate mathematical model.

The formulation, then, of a mathematical model is a compromise between
mathematical intractability and inadequate description of the system being modeled.
There usually is a choice of mathematical models between these two extremes. For
this reason, one usually talks about ‘“a’ mathematical model for a system not
““the”” mathematical model.

Another point to be made about mathematical modeling is that it is by no
means a purely mathematical problem. It has a mathematical side, but it also has,
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for example, a physical or economical side. Indeed, mathematics alone would not
allow us to arrive at Ohm’s law. We need physics too. Mathematical modeling
is the interface or bridge between pure mathematics and other disciplines.

4. THE AXIOMATIC METHOD. THE PROCESS OF ABSTRACTION

The reader probably had his first encounter with the axiomatic method in
the study of Euclidean geometry. Since all of mathematics and the subject matter
of this book, in particular, is based on the axiomatic method, let us recall some of
the features of axiomatic reasoning.

In every branch of mathematics one starts out with a collection of *‘un-
definables.” In the Euclidean geometry (of the plane) this includes ““ points” and
“lines.” Next, certain properties are stated. These properties (axioms, postulates)
play the role of mathematical legislation and form the starting point of mathe-
matical life, or reasoning. While these axioms usually have some basis in intuition,
it should be emphasized that mathematical reasoning plays no role’ in establishing
these axioms. Some of the axioms of Euclidean geometry are: (a) the parallel
postulate, and (b) if L is a line, then there exists a point not on L. Once the axioms
have been chosen, one then tries to prove certain properties or theorems. For
example, congruence or similarity of triangles is a question studied in Euclidean
geometry.

The axiomatic method is the method of mathematics, in fact, it is mathematics.
Even though there are many controversies in the mathematical community over
the contents of sets of axioms, there is no question over the role of the axioms.

While the role of the axiomatic method in mathematics has been known for
centuries, the emphasis of this role that one finds today is something which
developed only recently. One can see this change by comparing the research papers
of the last century with those published today. In the past it required very careful
reading in order to determine the hypotheses needed in order to get a particular
conclusion. Today, with most papers written in the definition-theorem-proof style,
it is very easy to determine this.

Of course, axiomatic systems just do not happen. They must be formulated.
As mentioned in Section 1, while working on seemingly diverse problems, one
often finds that similar techniques are being employed. For example, the reader
may be familiar with the z-transform and Laplace-transform techniques as applied
to discrete-time and continuous-time systems, respectively. Another example
would be the techniques used to study the harmonics of a vibrating string and the
energy levels of the hydrogen atom. It is natural, then, to inquire into the essential
features (or properties) of these techniques which allow them to be applied in
different ways. By listing these properties (or axioms) as hypotheses and deriving
results from them one thereby goes from a concrete problem to a more abstract

! We should note that a set of axioms should be consistent, that is, they should not lead to contra-
dictory statements. This question of consistency is a very important question in mathematical
logic, but we shall not go into it here. Instead, we refer the reader to Wilder [1].



