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PREFACE

The present work is a translation of the eighth German edition.
The notation for vectors has been modified, so as to briﬁg it into
line with that cuStomary in English books. A new feature is the
collection of problems and solutions. Special thanks are due to the
translator for the capable and careful way in which he has carried

out his task.
R. BECKER.

BERLIN, May, 1932.




The English publishers wish to express their thanks to the authorities
of the University of London for permission to usé their examination papers
in the collection of examples.



| PREFACE
TO THE EIGHTH GERMAN EDITION

The work entitled An Introduction to Mam'well’s Tkeo'ry, by A.
Foppl, appeared in 1894. Ten years later, the second edition, recast
and thoroughly revised, was published as the first volume of Max
Abraham’s Theory of Electricity. For a whole generation of physicists
after that date, * Abraham-Foppl ” was more widely used than any
other textbook introductory to electrical theory. The fact that as
many as seven editions appeared in Abraham’s lifetime is convincing
evidence of the estimation in which the work was held by teachers
and students.

In the new edition, I have felt bound to preserve the essential
features of 2 book so obviously suited to its purpose, and many passages
have been taken over unchanged. At the same time, some fairly exten-
sive alterations have been made in particular sections, always in the
direction of laying greater emphasis on the concrete physical content
of the theory, and less on its purely formal aspects. To assist the student
towards a vivid comprehension of the text, the number of diagrams
. has been increaged more than fivefold.

New sections have been added dealing with electrostriction, and
with the thermodynamics of the field. The theory of the skin effect
has been amplified, and the theory of waves in wires has been extended
to the case when resistance is taken into account. In the exposition
of the theory of alternating currents, advantage has been taken of the
vector diagram used by electrical engineers. The treatment of electric
currents as a cyclic system has been omitted altogether. The sub--
stance of the last two sections of the previous edition—on ferro-
magnetism and induction phenomena in moving bodjes—has been
* -incorporated in other sections.

In the choice of units I have followed Abraham’s last ed.ltmn in
every detail. The system used throughout is the Gadssian system,
in which the energy density in a vacuum is equal to

—17—1 (E2 + Ez) ergs/cm.3,

- v



viiiua PREFACE TO THE EIGHTH GERMAN EDITION

and the dielectric constant and permeability of a vacuum are each
taken as unity. It does not seem possible at present to set up a system
of units which will satisfy the electrical engineer and the physicist
alike. With regard to Maxwell’s theory, the difference between the
physicist and the electrician is not a matter of notation merely, but of
principle. The technical view adheres much more strictly than current
physics does to the original form of the Faraday-Maxwell theory.
The engineer looks upon the vectors E and D—even in a vacuum—
as magnitudes of quite different kinds, related to one another more
or less like tension and extension in the theory of elasticity. From
this point of view it must of course seem a very questionable procedure,
in an exposition of fundamental principles, to put the factor of pro-
portionality K, in the equation D = KE, equal to 1 for empty space,
thus artificially attributing to D and E the same dimensions. On the
other hand, the distinction in principle between D and E, which is
closely connected with the mechanical theory of the aether, has been
absolutely abandoned in modern physics, the electromagnetic con-
ditions at any point in empty space being now regarded as completely
defined when we are given onme electric vector E and one magnetic
vectot B (or H). The numerical identity of E and D (for empty space)
in the Gaussian system of units is not, for the physicist, the result
of an arbitrary definition, but the expression of the fact that E and D
are actually the same thing. The introduction by the engineer of a
dielectric constant and permeability not equal to 1 in a vacuum seems
to the physicist to be merely an artifice, by means of which formulse
are reduced to a shape which is convenient for practical calculations.

For purposes of reference, a list of important formule is given in
an appendix. ’

R. BECKER.
BerLIN, February, 1930.



INTRODUCTION

\

The theory of electric and magnetic phenomena, as it existed
before Maxwell, was based on the conception of action at a distance
between bodies which are electrified, magnetized, or traversed by
electric currents. The only physicist who took a different view was
Faraday. But he was not enough of a mathematician to express his
ideas in the complete and self-consistent form which would have
raised them to the rank of a theory. His method of regarding and
describing electrical phenomena was, it is true, a mathematical one,
but he did not express himself in terms of the ordinary symbolism
of mathematics. This was first done by Maxwell, who translated
Faraday’s ideas into strict mathematical form, and thus built up a
theory which differed essentially from the theory of action at a distance
even in its foundations, and still more in its higher developments.

The discoveries of Heinrich Hertz supplied the proof that electro-
magnetic processes do actually take place in dielectries, and in par-
ticular in free space, and the fundamental ideas of Ma,xwell’s theory
have now been accepted by all physicists.

What are the essential characteristics which d.lstmgmsh Maxwell’s
- theory of field action from the theories of action at a distance?

The essential ideas underlymg Maxwell’s theory which we shall
have to consider are these:

1. The idea that all electric and magnetic action of one body
on another separated from it is trapsmitted through the intervening .
space, whether that be empty or occupled by matter.

2. That the seat of electric or magnetic energy is to be found net
only in the body which is electrified or magnetized, or which is traversed
by a current, but also, and to a far greater extent, in the surrounding
field.

3. That the electric current in an unclosed conducting circuit is
closed, or—made complete, by a supplementary “ displacement
current ” in the dielectric, and that this displacement current is
connected with the magnetic field strength in the same way as the

conduction current.
it



xiv INTRODUCTION

4. That the flux of magnetic induction has no sources, or, in other

‘words, that “true” magnetism is never found.

5. That light waves are electromagnetic waves.

Maxwell himself stated his equations in terms of quaternions,
but only rather incidentally; in essence, his exposition is based on
Cartesian methods. With the latter, however, it is difficult to grasp
the connexion of the formule as a whole. It is much easier to do so
when the vector caleulus is employed. The trouble it costs to make
oneself familiar with vector methods is amply repaid by the advan-
tages gained. The use of vectors is in fact indispensable, if what we
aim at is to secure as faithful a reproduction as possible of Faraday’s
idea of the flux of force. The theory of vectors and vector fields is
therefore placed at the head of the present work. The notation is
that now used by nearly all writers who are doing original work in
electrodynamics. ‘In the following chapters, the method of vectors,
which is useful in rigid dynamics and in hydrodynamics as well as in
electricity, will be employed throughout.



CONTENTS

Part I
VECTORS AND VECTOR FIELDS
CHAPTER 1
VECTORS

' Page

1. Definition of & Vector - - - - - - - . . - 1
2. Addition and Subtraction of Vectors - - - - - - - 2
3. Unit Vectors and Fundamental Vectors. Components O - 4
4. The Inner or Scalar Product - - - - - - - -« - 7
6. The Outer Product or Vector Product - - . - . - - 8
6. Products of Three Vectors - - - - . - - 10
7. Differentiation of Vectors with Respect to the Tlme - - . - - 1

CHAPTER II
VEcror Fierps -

L. Hlustration from Hyd.todynn.mxcs - - - - - 13
2. The Irrotational Field. The Gradient and the Lme Integra.l - . - 14
3. The Strength of a Distribution of Sources, Gauss’s Theorem, and Divergence 16
4. Green’s Theorem .- - - - - - - - - - - 18
B. Point Sources - - . - . - - - - - - 19
6. Double Sources - - - - - . 22
7. Determination of an Irrota.hona.l Vector erld wben its Sources are Given - 24
8. Surface Distributions of Sources. Simple and Double Strata - - - 26
9. The Uniform Double Stratum - - - - - - - - 30
10. Curl, and Stokes’s Theorem - - - - - - - 32
11. Calculation of a Vector Field from its Soumes and Vortwes - - - 3
12. Time Rate of Change of the Flux through a Moving Element of Area - -. 3
13. Orthogonal Curvilinear Co-ordinates - - - - - - - 4

14. Tensors. Polar and Axial Vectors - - - - - - - - 43




x CONTENTS

Part 11

THE ELECTRIC FIELD

CHAPTER III

Tae ErkcrrostiTic FIELD IN FREE SPACE

. Electric Intensity - - . - - .

. The Electrostatic Potential - - - -
. The Distribution of Electricity on Conductors -
. Capacity of Spherical and Plate Condensers -
. The Prolate Ellipsoid of Revolution -

. A Point Charge in Front of a Conducting Pla.ne
. Point Charge and Conducting Sphere - -

< R =R N S

.CHAPTER IV
DisLECTRICS

1. The Plate Condenser and the Dielectric - -
2. Dielectric Polarization - - - - -
3. Maxwell's Displacement Vector D - - -
4. Spherical Condenser. Semi-infinite Dielectric -
5. Dielectric Sphere in & Homogeneous Field -

CHAPTER V

. Flux of Electric Force - - - - .

Page
53
&5
B7
58

62
85
67

70
72
74
76
79

EnERracY aAND MEcHANICAL FoRcES 1N THE ELECTROSTATIC FIELD

1. Charges and Metallic Conductors in Free Space -

2. Energy of the Field when Insulators are Present
3. Thomson’s Theorem - -
4. Dielectric Sphere in a Non-homogeneous erld -
5. Mechanical Forces in the Electrostatic Field -

6. Electrostriction in Chemically Homogeneous Liquids and Ga.ses

7. The Mechanical Force at the Surface of a Dielectric -

8. The Maxwell Stresses - - - - -

CHAPTER VI

Tae Steapy ErEcrric CURRENT

1. Ohm’s Law. Joule’s Law - - - -
2. Conduction Current. Displacement Current -
3. Impressed Forces and Electromotive Force -
4. The Voltaic Circuit R

81

87

91

100
104

109
112
118
120



CONTENTS ' xi

Part III
THE ELECTROMAGNETIC FIELD
CHAPTER VII
MaeneTrIic VECTORS
Page
1. Magnetic Intensities in Vacuo - - - - - - - - 123
2. The Magnetic Field of Steady Currents - - - - - - - 125
3. Magnetization and Magnetic Susceptibility - - - - - - 131
4. Magnetic Induction - - - - - - - . . - 136
6. Faraday’s Law of Induction - .- - - - - - - - 139
CHAPTER VIII
ErEcTRODYNAMICS OF MEDIA AT REST
1. Maxwell’s Equations for Bodies at Rest - - - - - - 143
2. Energy and Maxwell’s Stresses in the Magnetic erld - - - - 146
3. Electric and Magnetic Units - - - - - - - - - 152
CHAPTER IX
TEE ELECTRODYNAMICS OF QUASI-STEADY CURRENTS
' .
1. The Theorem of Energy for a System of Linear Currents - - - - 169
2. Self-induction and Mutual Induction - - - - - - 163
3. Calculation of Inductance in some Special Ca.aes - - - - - 166
4. Circuit with Resistance and Self-Inductance - - - - - - 171
5. The Vector Diagram - - - - - - - . ST 172 -
6. Two Circuits (Transformer) - - - - - - 175
7. Circuit with Self-Inductance, Capa.clty, and Remtance - - - 176
CHAPTER X
ELECTROMAGNETIC WAVES
1. Plane Waves in a Homogeneous Isotropic Dielectric - - - - - 182,
2. Plane Waves in Homogeneous Conductors - - - - - - 187
3. Reflecting Power of Metals - - - - - 191
4. The Poynting Vector in tha St.ea.dy a.nd in the Penodm erld - - - 193
5, The Skin Effect - - - - - - - - 196
6. Self-inductance and Capacity of Twm Cl.rcmts - - - - - - 201
7. Waves along Perfectly Conducting Wires - - - - - - 206
8. Waves along Wires of Finite Resistance - - - - - 211
9. The Complex Poynting Vector and the Equation of Telegmphy - - - 217
10. The General Electrodynamic Potentials - - - - - - - 220
11. Hertz’s Solution - - - - - - - - - 223
12. The Radiation from a Linear O&mlla.mr - . - - - - - 227



xii CONTENTS

Part IV

ENERGY AND FORCES IN MAXWELL’S THEORY

CHAPTER XI

TEERMODYNAMICS oF FieLp ENERGY

Page
1. The Field Energy as Free Energy - - - - - - - - 231
2. Thermal Effects at Constant Volume - - - . - - - 234
3. Thermodynsamical Theory of Electrostriction - - - - - - 237

CHAPTER XII

Tre Forces 1N FieLps waicHE VARY WiTH THE TIME

1. The Maxwell Stresses and the Principle of Action and Reaction - - - 242
SyNorsis oF FORMULZ AND NOTATION - - - - - - - 247
Exameres - - - - - - . - - - . . 253
ANSWERS T0 Examrres - - - - - - - - - 269

-

Isppx - - - . . . . . L. L. e



Part 1
VECTORS‘_ AND VECTOR FIELDS

_CHAPTER 1

Vectors

' 1. Definition of a Vector. . .

. The equations of physics are ultimately relations between quantities
which are immediately measurable. What a measurement tells is the
number of tirhes a given unit is contained in the quantity measured.
The unit may be chosen arbitrarily (e.g. a metre, a second, a degree
Centigrade), or it may be redueed to other units, previously defined,
with which it is connected by an equation. The formula for the unit,
obtained by solving this equation, represents the  dimensions” of
the unit with respect to the other units. The so-called * absolute ”
system of measurement employs the three fundamental units of length,
mass, and time; but no matter what units are chosen to serve as the
foundation of the absolute system, the two sides of any equation in
physics must “ balance ”*, i.e. they must agree with each other not
only numerically but also in dimensions. In fact, if there were any
disparity in the dimensions, a change in the fundamental units would
-destroy the numerical equality of the two sides-of the equation. The
fact that the dimensions must balance is taken advantage of in physical
calculations as a first check upon the accuracy of an equation.

Physical quantities of the simplest type are completely defined
by the assignment of a single number, along with a known unit. Such
quankities are called scalars; mass and témperature are examples.

But there are other physical quantities, which de not belong to the
class of scalars. Thus, in order to specify the final position of a point
which is displaced from a given initial position, three numbers are
required, say, for example, the Cartesian co-ordinates of the final
point with respect to axes through the initial point. In this case we
might, withous introducing any new kind of quantity, work throughout
" with sealars, viz. the component displacements. But if we did so we
_ should in the first place be neglecting the fact that, physically speaking,

1 M 2

(E484)



2 VECTORS AND VECTOR FIELDS

a displacement is a single idea; and, secondly, we should be importing
a foreign element into the question, viz. the co-ordinate system, which
has nothing to do with the displacement itself. We shall therefore
introduce displacements as quantities of a new type, and establish
a system of rules for their use. Only when we come to evaluate formule
numerically will it be necessary to bring in a definite co-ordinate system.

Rectilinear displacements of a point, and all physical quantities
which can be represented by such displacements (in the same way
as the values of a scalar can be represented by the points of a straight
line), and which also obey the same law of addition as the corresponding
d;splacements, are called vectors.

A rigorous test for determining Whether a quantlty is a vector
or not will be given in § 3 (p. 6).

2. Addition and Subtraction of Vectors. C

In the definition of a vector just given, vector addition has been
reduced to composition of rectilinear displacements. Take now two
vectors A* and B of the same dimensions and type; in order to gdd
them, consider a movable point situated to begin with
at T (fig. 1). Let this point be given, first, the dis-
placement (1, 9), representing the vector A in magni-
tude, duectmn, and sense; then the dmplacement 2, 3),
agreeing in length, direction, .
and senset with the vector B
B; the result is equivalent arS,
to a displacement of the A
movable point from 1 to 3. 1=
This rectilinear displace- B *
ment which -takes the point Fig.z
directly from 1 to 3 is
called the resultant or geomatric sum of the two displacements (1, 2)
and (2, 3). It represents a vector € which, in accordance with the
definition of § 1, we call the resultant or sum of the vectors A and B:

C=A4B. . ... \,u

If the dlsplacement B is made first, and then the dmplacement A
(fig. 2), the movable point describes the path (143), which with (123)
makes up a parallelogram; accordingly the resultant of the dis-
placements B and A, like that of A and B, is represented by the
diagonal (1, 3) of that parallelogram. Hence vector addition obeys
the commuiative law: the geomeiric sum of two vectors is tndependent
of the order of addition:

"Fig. 1

A+B=B+A . .. ... (2

* Heavy type will be used throughout to indicate vectors.
 In future, the word direction will be used so as to inclnde sense. [Tr.]

i



VECTORS 3

This parallelogram law of addition (fig. 2) is characteristic of the
quantities called vectors. Quantities exist with which we can associate
the properties of magnitude and direction, but which follow another
law of composition. For example, we know from kinematics that
infinitely small rofations of a rigid system about a fixed point can
be represented by vectors, since their composition obeys the parallelo-
gram law. On the other hand finite rotations are compounded in a
more complicated way, and therefore are not vectors. It is proved
in statics that forces acting on a particle follow the parallelogram
“law of addition; such forces are therefore vectors.

If we consider the displacements derived by addition from three
vectors A, B, and C, we see that the following law holds, called the
associative law of vector adds'ion:

(A+B)+C=A+(B40. . . . . (3

In fig. 3 the sum of three vectors is found by completing the quadri-

lateral, which has the individual vectors and their sum for its sides;

and similarly the sum of »n vectors is

formed by means of the so-called vector

polygon; this hag n + 1 sides, namely

the n vectors which are to be added,

and their resultant. ,
We may now ask the gquestion: . A+B+C

What meaning is to be attached to the Fig. 3

geometric difference of two vectors A

and B? The answer is that we define the difference in such a way

that ‘the relation

B—B=0 . ... ...(4

holds for vectors, just as the similar relation holds for scalars. The
vector —B therefore corresponds to a displacement which annuls the
displacement B, ie. brings the movable point back to its original
position. Thus —B is a vector of the same magnitude as B, but in
the opposite direction. By the geometric difference of the wectors
A and B we mean the geometric sum of A and —B, so that we define
vector subtraction as follows:

A vector B is subtracted from a vecior A by addifig to A a vector ofthe
same magnitude as B, bul tn the opposite direction.

In_ the pa.rallelogram of fig. 2, the diagonal (13) represents the
geometric sum A+ B, the dlagonal (42) the geometric difference
A— B

Fhe rules for the addition and. subtraction of vectors which
have now been laid down agree formally with the laws of ordinary
algebra. .
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3. Unit Vectors and Fundamental Vectors. Components.
By the product A of a scalar o and a veclor a,
=od=8a . . . . . . . (5)

e understand a vector whose magnitude is equal to the product of

the magnitudes of the scalar a and the vector a,
|Al=lal.[8], . .. ... ()

and which has the same direction as a, or the opposite direction,
according as the scalar « is positive or negative.

The mubtiplication of vectors by scalars obeys the rules of the
algebra of scalar quantities. The commutative law has already been
explicitly stated in, (5); and the distributive law also holds, i.e.

(a4 Ba=aa-- Pa, a{at+b)=oca4ab. . . (5b)

All vectors A which have the same direction can be connected with
a vector 8, also in that direction, and of magnitude 1:

A=[Als . . ... ... (8

A vector 8, of magnitude 1, is called a unit vector. ‘We shall adopt
the convention of associating the dimensions (§ 1) of a vector with its
magnitude; the unit vector s in (6) must therefore be given the
dimensions of a pure number. Unit vectors afford a convenient means
of specifying the direction of a vector, or of a number of parallel
vectors.* Let there now be given a fixed unit vector s, and an arbitrary
vector a, which makes with s the angle ¢. The quantity

. @=|alcsp . . . . .. . (T

is called the component of a relative to the unit vector s, or the component
of a in the direction s; it is equal to the length of the projection of a
on the line of the unit vector s, taken
with the positive or negative sign ac-
‘cording as the projection agrees m sense
with s or not.
‘ The component of a vector is a scalar
quantity; if we wish to express the pro-
-Jection of a on the line of the unit
Fig. 4 vector 8 in a form which indicates its
direction also, we have to multiply the
component of a in the direction s by the unit vector s itself: hence
the projection as a vector is represented (fig. 4) by

| a]cosg.s.

® The word direction is sometimes used as equivalent to unit vector, [Tr.]



