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PREFACE
TO THE FOURTH EDITION

ADVANTAGE has been taken of the preparation of the fourth edition of this
work to add a few additional references and to make a number of corrections

of minor errors.

Our thanks are due to a number of our readers for pointing out errors
and misprints, and in partiqular we are grateful to Mr E. T. Copson, Lecturer
in Mathematics in the University of Edinburgh, for the trouble which he has
taken in supplying us with a somewhat lengthy list.

ETW.
G.N. W,

June 18, 1927.
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CHAPTER 1
COMPLEX NUMBERS

11. Rational numbers.

The idea of a set of numbers is derived in the first instance from the
consideration of the set of positive® integral numbers, or positive integers;
that is to say, the numbers 1, 2, 8, 4, .... Positive integers have many
properties, which will be found in treatises on the Theory of Integral
Numbers; but at a very early stage in the development of mathematics
it was found that the operations of Subtraction and Division couid only be
performed among them subject to inconvenient restrictions ; and consequently,
in elementary Arithmetic, classes of numbers are constructed such that the
operations of subtraction and division can always be performed among them.

To obtain a class of numbers among which the operation of subtraction
can be performed without restraint we construct the class of infegers, which
consists of the class of positive} integers (+ 1, +2, +3,...) and of the class
of negative integers (—1, —2, — 3, ...) and the number 0.

To obtain a class of numbers among which the operations both of sub-
traction and of division can be performed freely!, we construct the class of
rational numbers. Symbols which denote members of this class are %, 3,
0, — 3p.

We have thus introduced three classes of numbers, (i) the signless integers,
(ii) the sntegers, (iii) the rattonal numbers.

It is not part of the scheme of this work to discuss the construction of

the class of integers or the logical foundations of the theory of rational
pumbers§.

The exteusion of the idea of number, which has Just been described, was not effected
without some opposition from the more conservative mathematicians, In the latter half
of the eighteenth century, Maseres (1731~1824) and Frend (1757-1841) published works
on Algebra, Trigonumetry, etc, in which the use of negative numbers was disallowed,
although Descartes had used them unrestrictedly more than a hundred years before.

* Strivtly speaking, a more appropriate epithet would be, not positive, but signless.
1 In the strict sense.

1 With the exception of division by the rational number 0.

§ Buch a discuasion, defining a rational nuniber as an ordered number-pair of integers in o
similar wanner to that in which a complex number is defined in § 1°3 as sn ordered number-pair
of real numbers, will be found in Hobson’s Functions of @ Real Variable, §§ 1-12.
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A rational number # may be represented to the eye in the following
manner :

If, on a straight line, we take an origin O and a fixed segment OFP,
(P, being on the right of 0), we can measure from O a length OP, such that
the ratio OP,/OP, is equal to #; the point P, is taken on the right or left of
O according as the number z is positive or negative. We may regard either
the point P, or the displacement OP, (which will be written OP,) as repre-
senting the number 2.

All the rational numbers can thus be represented by points on the line,
but the converse is not true. For if we measure off on the line a length 0Q
equal to the diagonal of a square of which OP, is one side, it can be proved
that ¢ does not correspond to any rational number.

Points on the line which do not represent rational numbers may be said to represent
irrational numbers; thus the point @ is said to represent the irrational number
#/2=1414213.... But while such an explanation of the existence of irrational numbers
satisfied the mathematicians of the eighteenth century and may still be sufficient for
those whose interest lies in the applications of mathematics rather than in the logical
upbuilding of the theory, yet from the logical standpoint it is improper to introduce
geometrical intuitions to supply deficiencies in arithmetical arguments; and it was
shewn by Dedekind in 1858 that the theory of irrational numbers can be established on
a purely arithmetical basis without any appeal to geometry.

12. Dedekind’'s® theory of irrational numbers.

The geometrical property of points on a line which suggested the starting
point of the arithmetical theory of irrationals was that, if all points of a line
are separated into two classes such that every point of the first class is on
the right of every point of the second class, there exists one and only one
peint at which the line is thus severed.

Following up this idea, Dedekind considered rules by which a separation+
or section of all rational numbers into two classes ean be made, these classes
(which will be called the L-class and the R-class, or the left class and the
right class) being such that they possess the following properties:

(1) At least one member of each class exists.

(ii) Every member of the L-class is less than every member of the
R-class.

It is obvious that such a section is made by any rational number x; and
z is either the greatest number of the L-class or the least number of the

* The theory, though elaborated in 1858, was not published before the appearancs of Dede-
kind’s tract, Stetigkeit und irrationale Zahlen, Brunswick, 1873. Other theories are due to
Weierstrass [see von Dantscher, Die Weierstrass'sche Theorie der irrationalen Zahlen (Liipzig,
1908)] and Cantor, Math. Ann. v. (1872), pp. 123-130.

+ This procedure formed the basis of the treatment of irrational numbers by the Greek
mathematicians in the sixth and fifth centuries s8.c. The advance made by Dedekind consisted in
observing that a purely arithmetical theory could be built up on it.
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R-class. But sections can be made in which no rational number « plays this
part. Thus, since there is no rational number® whose square is 2, it is easy
to see that we may form a section in which the R-class consists of the positive
rational numbers whose squares exceed 2, and the L-class consists of all
other rational numbers.

Then this section is such that the R-class has no least member and the

L-class has no greatest member; for, if # be any positive rational fraction,
z(2*+6 2 (2 — o) (22~ 2)
3(:c’+2)’ v MY -2=maow
and 2 are in order of magnitude; and therefore given any member z of the
L-class, we can always find a greater member of the L-class, or given any
member 2’ of the R-class, we can always find a smaller member of the
R-class, such numbers being, for instance, y and y', where y' is the same
function of #’ as y of .

and y= then y—xz= so 2, ¥

If a section is made in which the R-class has a least member 4,, or if the
L-class has a greatest member A,, the section determines a rational-real
number; which it is convenient to denote by the samet symbol 4, or 4,.

If a section is made, such that the R-class has no least member and the
L-class has no greatest member, the section determines an trrational-real
number}.

If z, y are real numbers (defined by sections) we say that a2 is greater
than y if the L-class defining = contains at least two§ members of the R-class
defining y.

Let @, 8, ... be real numbers and let 4,, B,, ... be any members of the
corresponding L-classes while 4,, B,, ... are any members of the corresponding
R-classes. The classes of which 4,, 4,, ... are respectively members will be
denoted: by the symbols (4,), (4,), ....

Then the sum (written a + 8) of two real numbers a and 8 is defined as
the real number (rational or irrational) which is determined by the L-class
(4,+ B,) and the R-class (4,+ B,).

1t is, of course, necessary to prove that these classes determine a section of the rational
numbers. It is evident that 4, + B, < A,+ B, and that at least one member of each of the
classes (4,4 By), (d3+ B;) exists. It remains to prove that there is, at most, one rational

* For if p/q be such a number, this fraction being in its lowest terms, it may be seen that
(2¢ - p}/(p - 9} is another such number, and 0<p - ¢<g, 8o that p/q is not in its lowest terms.
The contradiction implies that such a rational number does not exist.

+ This causes no confusion in practice,

1 B. A. W. Rassell defines the class of real numbers as actually being the class of all L-classes;
the class of real numbers whose L-classes have a greatest member corresponds to the class of
rational numbers, and though the rational-real number z which corresponds to a rational number
z is conceptually distinet from it, no confusion arises from denoting both by the same symbol.

§ If the classes had only one member in common, that member might be the greatest
member of the L-class of z and the least member of the R-class of y.
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number which is greater than every 4, + B, and leas than every 43+ B; ; suppose, if possible,
that there are two, z and y (y>z). Let a, be a member of (4;) and let a; be a member
of (4,); and let & be the integer next greater than (23— a)/{4 (¥ —2)}. Take the last of

the numbors a,+%°,(aq—a,), (where m=0, 1, ... &), which belongs to (4,) and the first of
them which belongs to (4;); let these two numbers be ¢;, ¢;. Then

1
02-01=2—7(“r"1x)<§ y-=)
Choose dy, dy in a similar manner from the classes defining 8; then
ctdy—c-di<y—~a.
But ¢;+di>y, ¢;4+d; <z, and therefore co+dy—e,—dy 2y 7; Wwe h“_'“‘ thereff)re
arrived at a contradiction by supposing that two rational numbers &, y exist belonging
neither to (4, + B;) nor to (43+ By).

If every rational number belongs either to the class (4,4 B,) or to the class (43+ Bs),
then the classes (4,+ B,), (43 + B3) defive an irrational number. If one rational number =
exists belonging to neither class, then the L-class formed by # and (d,+B,) and the
R-cluss (4;+ B) defive the rational-real number #. In either case, the number defined
is called the sum a+p8.

The difference a— 8 of two real numbers is defined by the L-clasa (4,— Bjy) and the
R-class (45— By).

The product of two positive real numbers a, @ is defined by the R-class (A438:)
and the L-class of all other ratiunal numbers.

The reader will see without difficulty how to define the product of negative real num-
bers and the quotient of two real pumbers; and further, it may be shewn that real

numbers may be combined in accordance with the associative, distributive and commuta-
tive laws.

The aggregate of rational-real and irrational-real numbers is called the
aggregate of real numbers; for brevity, rational-real numbers and irrational-
real numbers are called rational and irrational numbers respectively.

1:3. Complex numbers.

We have seen that a real number may be visualised as a displacement
along a definite straight line. If, however, P and @ are any two points in a
plane, the displacement PQ needs two real numbers for its specification ; for
instance, the differences of the coordinates of P and @ referred to fixed
rectangular axes. 1f the coordinates of P be (£, n) and those of Q (£ +z, 7+ ¥),
the displacement PQ ay be described by the symbol [z, y]. We are thus
led to consider the association of real numbers in ordered® pairs. The natural
definition of the sum of two displacements [z, y], [, '] is the displacement
which is the result of the successive applications of the two displacements ;
it is therefore convenient to define the sum of two number-pairs by the
equation

[z 9] +[«, ¥ =[z+, y +¥]

* The order of the two terms distinguishes the ordered number-pair [z, y] from the ordered
number-pair (y, z].
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The product of a number-pair and a real number 2’ is then naturally
defined by the equation
2 x [z, y]=[z'z, 2'y).
We are at liberty to define the product of two number-pairs in any
convenient manner; but the only definition, which does not give rise to
results that are merely trivial, is that symbolised by the equation

[2 y] x [, y] = [22"— gy, 2y’ +2y]
It is then evident that
[z, 0)x [, y]=[a2', sy ] =2 x [, ¥]
and [0, 91 x [, ¥]1=[-9¥, syl =y x [~ ¥’ &}

The geometrical interpretation of these results is that the effect of
multiplying by the displacement [, 0] is the same as that of multiplying by
the real number «; but the effect of multiplying a displacement by [0, y]
is to multiply it by a real number y and turn it through a right angle.

It is convenient to denote the number-pair [z, ¥] by the compound
symbol z+ 4y; and a number-pair is now conveniently called (after Gauss)
a complez number ; in the fundamental operations of Arithmetic, the complex
number & + 10 may be replaced by the real number z and, defining ¢ to mean
0+ 11, we have 12=[0, 1] x [0, 1] =[—1, 0]; and so * may be replaced by - 1.

The reader will easily convince himself that the definitions of addition
and multiplication of number-pairs have been so framed that we may perform
the ordinary operations of algebra with complex numbers in exactly the same

way as with real numbers, treating the symbol 7 as a number and replacing
the product 1t by — 1 wherever it occurs.

Thus he will verify that, if a, b, ¢ are complex numbers, we have

a+db=b+a,
ab = ba,
(a+b)+ec=a+(b+e),
ab.c=a.be

a(b+c)=ab+ac,
and if @b is zero, then either a or b is zero.

It is found that algebraical operations, dircet or inverse, when applied to
complex numbers, do not suggest numbers of any fresh type; the complex
number will therefore for our purposes be taken as the most general type
of number.

The introduction of the complex number has led to many important developments in

mathematics, Functions which, when real variables only are considered, appear as
essentially distinct, are seen to be connected when complex variables are introduced :
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thus the circular functions are found to be expressible in terms of exponential functions
of a complex argument, by the equations

1 . 1, . .
coszmg (eiz4¢e7¥), sin .z:=2-t.(e" —e—ix),

Again, many of the most important theorems of modern analysis are not true if the
numbers concerned are restricted to be real; thus, the theorem that every algelraic
equation of degree n has n roots is true in general only when regarded as a theorem
concerning complex numbers.

Hamilton's quaternjons furnish an example of a still further extension of the idea
of number. A quaternion
wzi+yi+ 2k

is formed from four real numbers u, x, y, 2, and four number-units 1, 4, j, &, in the same
way that the ordinary complex number z+1y might be regarded as being formed from
two real numbers z, y, and two number-units 1, 5. Quaternions however do not obey
the commutative law of multiplication.

1-4.  The modulus of a complex number.

Let & 41y be a complex number, # and y being real numbers. Then
the positive square root of #*+ 3* is called the modulus of (z+ iy), and is
written

|+ 1yl

Let us consider the complex number which is the sum of two given
complex numbers, £ +1:y and v +4v. We have

E+iy)+@+w)=(@+u)+i(y+v).
The modulus of the sum of the two numbers is therefore
{(o+ur+ @+ o1,

or (22 + %) + (Ut + 0%) + 2 (zu + yo)}L.
But

(lz+iy|+ u+ivi]r= (2 + )} + (2 + )2
=(@+y)+ @ +0*)+2 (22 + y’)é (v + v{)t
=(2+ ¥+ (@ + v) + 2 {(2u + yo)t + (00 — yuy’},
and this latter expression is greater than (or at least equal to)
(@ + )+ (v 4 v*) + 2 (zu + yv).
We have therefore
[ +3y |+ |u+w|>|(x+y)+ (v +iv)],

Le. the modulus of the sum of two complex numbers cunnot be greuter than the
sum of their moduli; and it follows by induction that the modulus of the sum
of any number of complex numbers cannot be greater than the sum of their
moduli.
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Let us consider next the complex number which is the product of two
given complex numbers, x + iy and u + iv; we have

(z +1y) (u + 1) = (zu - yv) + ¢ (2v + yu),
and so | (z+ sy) (u+ ) | = {(2u— yv)* + (20 +yu)’]é
= {(@* + 37 ( + )
=|e+iy||u+iv]

The modulus of the product of two complex numbers (and hence, by in-
duction, of any number of complex numbers) is therefore equal to the product
of their moduli.

1-6. The Argand diagram.

We have seen that complex numbers may be represented in a geometrical
diagram by taking rectangular axes Oz, Oy in a plane. Then a point P
whose coordinates referred to these axes are «, y may be regarded as
representing the complex number z+4y. In this way, to every point of
the plane there corresponds some one complex number; and, conversely, to
every possible complex number there corresponds one, and only one, point of
the plane. The complex number z + ¢y may be denoted by a single letter* 2.
The point P is then called the representative point of the number 2z; we
shall also speak of the number z as being the affiz of the point I’.

If we denote (w’+y’)§ by = and choose 8 so that rcosf=a, rsinf=y,
then r and @ are clearly the radius vector and vectorial angle of the point P,
referred to the origin O and axis Oxz.

The representation of complex numbers thus afforded is often called the
Argand diagramt.

By the definition already given, it is evident that r is the modulus of z.
The angle 0 is called the argument, or umplitude, or phase, of z.

We write f=argz.

From geometrical considerations, it appears that (although the modulus of a complex
number is unique) the argument is not unique}; if @ be a value of the argument, the
other values of the argument are comprised in the expression 2w+ where 2 is any
integer, not zero. The principal value of argz is that which satisfies the inequality
—nm <argz=w,

* It is convenient to call z and y the real and imaginary parts of z respectively. We fre.
quently write z= R (2}, y = I(z).

+ It was published by J. R. Argand, Essai sur une maniere de représenter les quantités imagin-
aires danx les conatructions géométrigues (1806); it had however previously been used by Gauss,
in his Helmstedt dissertation, 1799 (Werke, 1. pp. 20-23), who had discovered it in Oct. 1797
(Math. Ann. Lvir. p. 18); and Caspar Wessel had discussed it in & memoir presented to th:
Danish Academy in 1797 and published by that Society in 1798-9. The phrase complex number
first occurs in 1831, Gauss, Werke, 11. p, 102,

1 See the Appendix, § A-521.
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If P, and P, are the representative points cotresponding to values z
and z, respectively of 2, then the point which represents the value z,+ 2, is
clearly the terminus of a line drawn from £,, equal and parallel to that
which joins the origin to P,.

To find the point which represents the complex number 2,z,, where 2, and
2, are two given complex numbers, we notice that if

z, =7 (cos f, + isin 6)),
2, = r, (cos Uy + ¢ sin 6,)
then, by multiplication,
zzy =113 {cos (6, + 0,) + Tsin (6, + &)}

The point which represents the number z,2, has therefore a radius vector
measured by the product of the radii vectores of P, and P,, and a vectorial
angle equal to the sum of the vectorial angles of P, and P,.
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MISCELLANEOUS EXAMPLES.

1. Shew that the representative points of the complex numbers 1+ 4i, 2474, 34 107,
are collinear.

2. Shew that a parabola can be drawn to pass through the representative pointa of
the complex numbers

241, 4447, 649, 8416;, 104255

3. Determine the nth roots of unity by aid of the Argand diagram ; and shew that the
number of primitive roots (roots the powers of each of which give all the roots) is the
oumber of integers (including unity) less than n and prime to it.

Prove that if 8y, &, 65, ... be the arguments of the primitive roots, ¥ cos pd=0 when

P is a positive integer less than Jwi——p where q, b, ¢, ... k are the different constituent
:

primes of #; and that, when p=;gg——b, 2cosp9=‘£b_c)“’2, where p is the number of

the constituent primes, (Matb. Trip. 1895.)



CHAPTER 11

THE THEORY OF CONVERGENCE

21. The definition* of the limit of a sequence.

Let 2, 2, 2, ... be an unending sequence of numbers, real or complex.
Then, if a number ! exists such that, corresponding to every positivet
number ¢, no matter how small, a number n, can be found, such that

lza—1ll< e

for all values of n greater than n,, the sequence (z,) is said to tend to the limit |
as n tends to infinity.

Symbolic forms of the statement} ‘the limit of the sequence (z,), as n
tends to infinity, is (' are:

lim z,=1, limz,=1, 2,1l as n— 0.

7 >

If the sequence be such that, given an arbitrary number N (no matter
how large), we can find n, such that |z, | > N for all values of n greater than
n,y, we say that ‘| z,| tends to infinity as # tends to infinity,’ and we write

23| > o,

In the corresponding case when —2,> N when n>n, we say that

Tp—r — 0.

If a sequence of real numbers does not tend to a limit or to oo or to — o,
the sequence is said to oscillate.

2-11.  Definition of the phrase ‘of the order of’

If (£.) and (z,) are two sequences such that a number n, exists such that
| (€n/2a)| < K whenever n > n,, where K is independent of n, we say that §, is
‘ of the order of” z,, and we write§ '

b= 0 (zn);
I5n+ 19 1
thus i =0 ()

If im (&, /2,) =0, we write {n=0/(z,).

* A definition equivalent to this was first given by John Wallis in 1655. [Opera, 1. (1695),
p. 382.)

+ The number zero is excluded from the class of positive numbers:

+ The arrow notation is due to Leathem, Cambd. Math, Tracts, No. 1.

§ This notation is due to Bachmann, Zahlentheorie (1894), p. 401, and Landau, Primzahlen,
1. (1809), p. 61.



