Parallel Computation:
Models And Methods,

(2)

Selim G. Akl :

Queen’s University
Kingston, Ontario, Canada

i

(LY

Prentice Hall, Upper Saddle River, New Jersey 07458
A

W
A |
p !



#%. 7.4, GENERATING COMBINATORIAL OBJECTS () 305
j=1: 1 2/3
=2: 1 2 4
é: j=3: 1/2/5
/S S
- j=4: 1/ 3/4
j=5: 1/ 3/5
j=6: 1/ 4/5
j=7: 2/ 3/4
j=8: 2/ 3/5
j=9 2/ 4/5 »
£ j=10: 3/4/5§\ - 0
¥ 3 y 4 ey

ﬁﬁ. Figure 7.24: Processor P; is one step ahead of P,-_Hhi'il the generation of combina-
¥ tions.
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f 2. During the jth iteration, P;;; updates D(i + 1); the new value is ax(i + 1),
w where k = (j +1) +n — (i +1) = j +n —1. Since this calculation may require
reference to a;4n—i(%), the latter needs to be stored by FP;.

3. During the jth iteration P;_; updates D(i — 1); the new value is az(i — 1),
where k = (5 + 1) + n — (i — 1). Since this calculation may require references
t0 aj4+1(2), aj42(2), ..., @j4n—i(i), these values need to be stored by F;.

The preceding analysis leads us to conclude that P; needs to maintain a;(%),
i+1(1)s -+, @j4n—i(¢). We observe, however, that within any n — i + 1 successive
combinations, where the elements in positions 1, 2, ..., ¢ — 1 are kept fixed, the
element in position ¢ has at most three different values: D(¢) and two other values,
denoted by d; (i) and dy(¢). This can be easily seen by noting that, at position 1,
Wany element v, where v < m — n + 1, occurs C(n — 4,m — v) times in successive
d&combinations:

1. If v =m — n + 1, then it appears once.
2. fv=m—n+1—1, then it appears n — ¢ + 1 times.

3. Ifv <m—n+1i—1, then it appears more than n — ¢ + 1 times.
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Therefore, P; needs to store only five local variables, namely, the three values of v
and the number of repetitions (i) and r1(i) when v appears more than once. All
processors terminate when D(¢) = m — n + 1 has been repeated n times; this occurs
simultaneously for all 4, 1 <4 < n. The algorithm is given next as algorithm LIN-
EAR ARRAY COMBINATIONS. Note that d; (¢), d2 (i), and 71 (i) can be initialized
arbitrarily, since each is needed only after it has been assigned a value.

Algorithm LINEAR ARRAY COMBINATIONS

Step 1: (1.1) D(0) «+m —n
(1.2) D(n+1) «m
(13) r(n+1)«0
Step 2: for i = 1 to n do in parallel
(2.1) D(5) « i
22)r@)n—-i+1
(2.3) while not (D(i) =m —n +i and r(i) > n) do
() ifr(@) >n—i
then output D(7)
else ifr(i) +r (1) >n—1
then output d, (3)
else output ds(i)
end if
end if
(i) z« D(i —1)
(iii) y < D(i + 1)
(iv) zr(i+1)
(v)if D) =m—n+1
then (a) da (i) «+ di(%)
(b) di (i)  D(5)
(€) () + (%)
(d) D(@) «z+1
(e) r(i) « 1
else fy=m-n+iandz=n-1
then (a) dz('b) — d (Z)
(b) d1(3) + D(3)
(c) m(2) < r(3)
(d) D(i) « D(i) +1
(e) r(@) « 1
else ifr(i) <n
then (i) « r(i) +1
end if
end if
end if
end while
end for. ®
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Analysis. The algorithm uses n processors, each with a constant amount
of storage space, and generates all C'(n,m) combinations, in constant time per
combination. It therefore has a cost of O(nC(n,m)), which is optimal, in view of
the Q(nC(n,m)) lower bound on the number of operations required to generate all
n-combinations of m elements.

7.4.4 Permutations

A permutation of S = {s1, s2, ..., 8,} is an arrangement of the elements of S
in a certain order. Thus, for n = 5, 8452855183 and s283855481 are two different
permutations. There are n! distinct permutations of n elements, requiring (nn!)
operations to be generated. In this section, we describe an algorithm for generating
all permutations of n arbitrary elements on which a total order is defined such that
81 < 82 < --- < 8,. The algorithm runs on a linear array of n processors Pj,
P,, ..., P,, indexed from left to right. Each processor is responsible for producing
one element of every permutation generated. Once a permutation has been gener-
ated, each processor updates the element it just produced, and the next permutation
is generated.

The algorithm generates permutations such that each permutation differs from
the previous one in the least possible way. This is accomplished by creating each new
permutation through a transposition of two neighboring elements in the previous
one. The resulting permutations are said to be generated in minimal-change order.
This approach is particularly suitable for the linear array, since each processor P;
has direct access only to its two adjacent processors P;—; and Pjy;.

Let E(i) be the output of processor P;. After each adjacent transposition, P;
generates an updated E(i), 1 < { < n, resulting in an entire new permutation being
produced as output. Initially, E(i) < s;, 1 < ¢ < n. The following steps are then
repeated until the algorithm terminates:

1. Move element s, to the left, from P, to Pi, by repeatedly exchanging it with
its left neighbor.

2. Generate the next permutation of {s1, s2, ..., Sp—1} in Pz, P3, ..., Py.

3. Move element sy, to the right, from P; to F,,, by repeatedly exchanging it with
its right neighbor.

4. Generate the next permutation of {51, 52, ..., 8p—1}in Py, Pp, ..., Ppy. B

The algorithm is based on the idea of generating the permutations of {sq, s2, ...,
Sp} from the permutations of {s1, s2, ..., s,—1} by taking each such permutation
and inserting s, in all n possible positions of it. For example, taking the permutation
§182...8p—1 Of {81, 82, ..., Sp_1}, we get n permutations of {s1, s3, ..., Sp} as
follows:
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81 82 ... Spn-2 Sp-1 8p
8 82 ... Sn-2 8p Sn—-1
81 Sg ... 8p 8Sp—2 8p-—1
8, 81 ... 8np-3 S8n-2 Sn-1
In Step 1 of the algorithm, we are given a permutation of {si, s2, ..., Sn—1}
in Py, Pa, ..., P,_; and the element s, in P,. The element s, is moved to the
left » — 1 times, thus generating n — 1 distinct permutations of {s1, 82, .-+, Sn}

Therefore, Step 1 can be viewed as consisting of n — 1 pulses, each producing a
distinct permutation.

With s, in P, Step 2 generates the next permutation of {s1, s2, ..., Sn—1} in
Py, Ps, ..., P,. Step 3 moves s, to the right n — 1 times, and n — 1 additional
permutations of {s;, S2, ..., Sn} are obtained. Like Step 1, Step 3 can be viewed
as consisting of n — 1 pulses, each producing a new permutation. Finally, Step 4
generates the next permutation of {s1, 82, ..., Sn—1} in P1, P, ..., Pa1 while s,
is in P,, and the loop is restarted at Step 1.

Steps 1 and 3 are trivial to implement on a linear array of processors: During
each pulse, the processor holding s, exchanges it with its left neighbor in Step 1 and
its right neighbor in Step 3. It remains to show how Steps 2 and 4 are implemented.

To generate the (n — 1)! — 1 permutations of {s1, 82, ..., sn—1} that follow
8182 .. .81, also by adjacent transpositions, we assign a direction to every element.
This is denoted by an arrow above the element, for illustration. Initially, all arrows
point to the left. Thus, if the permutations of {s1, s2,53,84} are to be generated,
we would have

— e

81 82 83 84 .
Now, an element is said to be mobile if its direction points to a “smaller” adjacent
neighbor—that is, a neighbor which precedes it according to the order relation <.
(Recall that s; < s < :-+ < sp.) In the foregoing example, s3, s3, and s, are
mobile, while in

= - =
83 81 82 84,

only s, and s3 are mobile. The algorithm is as follows:

while there are mobile elements do
(1) Find the largest mobile element; call it sm.
(2) Switch s, with the adjacent neighbor to which its direction points.
(3) Reverse the direction of all elements larger than sp,.

end while. B

To implement this idea on the linear array of processors, we set the direction
of E(1), E(2), ..., E(n —1) to the left initially. The direction of s, is immaterial
to the proper execution of the algorithm and can be defined arbitrarily. How do
all processors in Steps 2 and 4 know the largest mobile element? This is done by
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propagating that information during the n — 1 pulses that precede each of these
steps. A variable can be used that travels along with s, and holds at any given
time the largest mobile element in {s;, s2, ..., $,—1} it has encountered so far.
When s, reaches its destination at the end of Step 1 (Step 3), the largest mobile
element is “known” to P; (P,). It would appear that n — 1 additional pulses are
needed to make this information “known” to the other processors, thus violating
the constant-time condition. In order to avoid this, a second variable is used that
travels in the direction opposite to s,; this variable also holds at any given time

the largest mobile element it has encountered so far. Thus, each processor P; stores
two variables:

leftmaz (i) = index of the largest mobile element from the sequence {s;, s2, .
sn—l} in Pl, Pz, PR Pz

ey

rightmaz (i) = index of the largest mobile element from the sequence {s;, s, ...
$p—1}in P, Py, ..., Pp.

These two variables are initialized at the beginning of Steps 1 and 3 as follows:
Let E(i) = sg; then:

leftmaz (i) = rightmaz(i) = &k, provided that E(i) < s, and E(7) is mobile
=0 otherwise.

The variables are then updated during the n — 1 pulses of Steps 1 and 3.

Example 7.16 Let n = 5. The values of E(2), leftmaz(i), and rightmaz(i) during
the first iteration of Step 1 are shown in Figs. 7.25 and 7.26. O

The complete algorithm is given next as algorithm LINEAR ARRAY PERMU-
TATIONS. It begins with an initialization phase A in which the first permutation
is produced as output. This is followed by a second phase B in which Steps 1-4 are
iterated to generate the remaining permutations. Note that:

1. Whenever the index k is used, it is assumed that E(i) = si.

2. The direction of E(i) is stored in a variable arrow(i), taking one of the two
values left and right.

3. Two additional variables E(0) and E(n + 1) are used for convenience such
that E(0) = E(n + 1) = A, where s, < A.

4. The algorithm terminates when no mobile element is found, a condition that
is detected simultaneously by all processors, since in this case leftraz(i) =
rightmaz (i) for all 1 < ¢ < n. Each processor for which this equality holds
checks whether the same is true for one of its two neighbors, and if so, the
processor terminates execution.
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leftmax (i) 0 2 3 4 0
i Sy 85 83 8, s
rightmax (i) 0 2 3 4 0
(a)
leftmax (i) 0 2 3 4 0 COMPARE 0 AND 2
D - e = -
i ) S, S5 S5 S,
rightmax (i)
© 2 3 4 0 COMPARE4ANDO
(b)
leftmax (i) o 2 3 a4 o COMPARE2AND3
D, - -<- - -
i ) S, S5 S5 S,
rightmax (i)
© 2 4 4 0 COMPARE3ANDZ,
u AND REPLACE 3BY 4
©)

Figure 7.25: Finding the largest mobile element on a linear array (first two pulses):
(a) Initially; (b) After one pulse; (¢) After two pulses.

Algorithm LINEAR ARRAY PERMUTATIONS

A. Initialization
Step 1: for i =1 to n do in parallel
(1.1) E(2) «+ s;
(1.2) arrow(i) + left
(1.3) output E(7)
end for
Step 2: E(0) «+ A, E(n+1)« A
B. Repeat
Step 1: (1.1) for i = 1 to n do in parallel
if (arrow(i) = left and E(i — 1) < E(i) < s,)
or (arrow(i) = right and E(i + 1) < E(i) < s,,)
then leftmaz(i) + k, rightmaz(i) «+ k
else leftmaz(i) + 0, rightmaz(i) « 0
end if
end for
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leftmax (i) o 2 3 4 o COMPARE3AND4
D. - - —~—— -
i S 1 S 5 S2 53 S 4
rightmax (i)
0 4 4 4 0 COMPARE2ANDGY,
A A AND REPLACE 2 BY 4
(a)
' V'V comPARE4ANDO,
leftmax (i) 6 2 3 4 4 ANDREPLACEOBY4
D - e = =
i S 5 S 1 SZ S 3 S 4
rightmax (i) 4 4 4 4 o COMPAREOANDY,
) AND REPLACE 0 BY 4

(b)

Figure 7.26: Finding the largest mobile element on a linear array (second two
pulses): (a) After three pulses; (b) After four pulses.

(12)fori=1ton—1do
(i) E(n —i) < E(n —i+ 1), arrow(n—1i) + arrow{n—i+1)
(ii) for j =1 to n do in parallel
output E(j)
end for
(iil) leftmaz(i+1) + max(leftmaz (i), leftmaz(i+1))
(iv) rightmaz(n—1) « max(rightmaz(n—1i), rightmez(n—i+1))
end for
Step 2: (2.1) for i = 2 to n do in parallel
if max(leftmaz (), rightmaz(i)) < k
then reverse the direction of arrow(i)
else if max(lefimaz (i), rightmaz(i)) =k
then if arrow(i) = left
then E(i — 1) & E(i), arrow(i — 1) < arrow(s)
else E(i) & E(i + 1), arrow(i) & arrow(i+1)

end if
end if
end if
end for

(2.2) for i =1 to n do in parallel
output E(7)
end for
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Step 3: (3.1) Same as Step (1.1) of phase B

St

(32)fori=1ton—1do
(i) E(i) ¢ E(i + 1), arrow(i) < arrow(i+1)
(ii) for j =1 to n do in parallel
output E(j)
end for
(ili) leftmaz(i+1) + max(leftmaz (i), leftmaz(i+1))
(iv) rightmaz(n—i) « max(rightmaz(n—1), rightmaz(n—i+1))
end for
ep 4: (4.1) for i =1 ton — 1 do in parallel
Same as body of loop in Step (2.1)
end for
(4.2) for i =1 to n do in parallel
output E(7)
end for

until there are no mobile elements. W

Analysis.

The algorithm generates the n! permutations in constant time per

permutation, using a linear array of n processors, each with a constant amount

71
7.2

7.3

7.4

of storage space. The algorithm is cost optimal, in view of the Q(nn!) operations
required to generate the n! permutations.

7.5 PROBLEMS

Prove the correctness of the sorting algorithm in Section 7.1.1.

One interesting feature of the algorithm in Section 7.1.1 is that, once input
is complete and output starts, the array can begin processing a new input
sequence of n elements. This is useful when several sequences are queued for
sorting. Discuss the changes required in order for the algorithm to be able

to handle m consecutive input sequences, and analyze the performance of the
modified algorithm.

Another variant of the algorithm of Section 7.1.1 allows both P, and F, to
handle input and output. While P, is producing output, P, can receive input,
and conversely. Sorted sequences are produced alternately in nondecreasing
order (through P;) and in nonincreasing order (through P,). Analyze the

performance of this algorithm in the case where m sequences are queued for
sorting.

Consider the following algorithm for sorting a sequence of numbers S = {s1,
S2, ..., Sp} on a linear array of n processors P, P, ..., P,. Initially, F;
holds s;, 1 < i < n. As in Section 7.1.1, let “compare-exchange (P;, Pit1)”
denote the operation of comparing the numbers held by P; and P;y; and
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BUS
P, P, P, P P,

Figure 7.27: Linear array augmented with a bus.

then placing the smaller number in P; and the larger in P;;;. The algorithm,
known as odd-even transposition sort, consists of two steps that are performed
repeatedly:

Step 1: fori =1,3,...,2{n/2| — 1 do in parallel
compare-exchange (P;, Piy1)
end for
Step 2: for i = 2,4,...,2|(n — 1)/2} do in parallel
compare-exchange (P;, Pit1)
end for. B

Show that after [n/2] repetitions of the preceding two steps, in that order,
P; holds the ith smallest number. (Hint: Refer to Section 8.1.2.)

7.5 The algorithm in Problem 7.4 uses n processors and runs in O(n) time, for
a cost of O(n?), which is not optimal. Suppose instead that logn processors
are used, each capable of storing n/logn elements of the input sequence. The
‘compare-exchange (P;, P;y1)’ operation is now replaced with a ‘merge-split
(Pi, Piy1) operation. Assuming that each of P; and P;y; holds a sorted
subsequence, this operation merges the two subsequences into one and then
splits the latter into two halves, the first going to P; and the second to Py;.
Provide a complete description of the new algorithm, and analyze its running
time and cost.

7.6 One limitation of the linear array is its large diameter: It takes n — 1 steps
for a datum to travel from P, to P, on an n-processor array. In an attempt
to circumvent this weakness, a variant of the model is used in which a further
communication path, known as a bus, is available in addition to the usual
links connecting the processors. The setup is shown in Fig. 7.27 for n = 5. At
any given time during the execution of an algorithm, exactly one processor is
allowed to broadcast a datum to the other processors using the bus. All pro-
cessors receive the datum simultaneously. The time required by the broadcast
operation is assumed to be constant; thus to go from P, to P, a datum now
takes one time unit. The bus can also be used to provide input to the array
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from the outside world. An input sequence S = {s1, S2, ..., Sn} is to be
sorted on this model so that when the algorithm terminates, P; holds the ith
smallest element. Show how this can be done using the following approach to
sorting: An element occupies position i of the sorted sequence if exactly i — 1
elements are found to be smaller than it. Analyze the resulting algorithm’s
running time.

As defined in Section 2.3.1, a ring is a linear array of processors Py, P, ...,
P, in which P, and P,, are directly connected. Show how a ring can be used
to compute an m X 1 vector v resulting from multiplying an m X n matrix A
and an n x 1 vector u. Compare the running time of your solution to that of
the algorithm in Section 7.2.1.

Design an algorithm for multiplying two n X n matrices on a linear array of
processors, and analyze the running time, number of processors, and cost of
the algorithm.

An upper triangular matrix is a square matrix, all of whose elements below
the main diagonal are 0. Design a parallel algorithm for solving the system of
equations Az = b, where A is a given n X n upper triangular matrix, b is a
given n x 1 vector, and « is an n X 1 vector of unknowns.

Two methods were mentioned at the end of Section 7.2.2 to improve the
utilization of processors:

(a) Using n/2 processors instead of n.

(b) Solving two systems simultaneously, using n processors.

Provide the details of these two methods.

Describe a dual to the algorithm of Section 7.3.2 in which the w’s move twice
as fast as the z’s, and analyze the performance of the new algorithm.

Describe a dual to the algorithm of Section 7.3.4 in which the z’s move twice
as fast as the y’s, and analyze the performance of the new algorithm.

Describe an algorithm for performing convolution on a linear array such that
inputs, weights, and outputs all move during each time unit. Analyze your
algorithm.

Consider an array of processors Py, P,, ..., P, where Py is the leftmost
processor. A convolution can be performed on this array as follows: Let P;
store w;. The inputs i, Z9, ..., Tn are fed into Py and travel to the right.
When z; reaches P;, each P; holds z; and w;; it computes w;z; and sends the
result into an adder attached to the linear array, where y; = w1 +weza+- - -+
wg i is computed. The sequence of z’s is now shifted to the right, discarding




7.5. PROBLEMS 315

7.15

7.16

7.17

7.18

7.19

x, and bringing in zx41. Again, all processors compute a product, and the
adder produces yz. This continues until y,41-x has been obtained. Discuss
this algorithm and analyze its performance, paying particular attention to the
design of the adder.

Consider the linear array augmented with a bus, as described in Problem 7.6.
It is desired to solve the convolution problem on this model. Let the array
consist of k processors Pi, Py, ..., P (the leftmost processor being Py), with
P; holding w;. The outputs yi, Y2, ..., Ynt1-k are fed into Py (with y
entering first) and travel down the array from left to right. The bus is used to
provide the sequence {z1, 3, ..., £} as input to the array. Give the details
of this algorithm and analyze its performance.

A variant of the approach in Problem 7.15 uses a ring (instead of an array)
augmented with a bus. Here, P; holds y; (which, as in Section 7.3.1, stands

for yiysk, wheres =0,1, ..., I_El%""J), while the bus brings 21, 2, ..., Zn
into the array, in that order. The weights wy, wy, ..., wy, are shifted cyclically

around the ring so that, at each step, each weight enters a processor. Specify
what computations are performed by the processors, and analyze the resulting
algorithm. '

Describe an algorithm for performing convolution on a mesh-of-trees intercon-
nection network in O(logk) time using n x k processors.

The following definition of convolution (slightly different from the one in Sec-
tion 7.3) is sometimes used: Given two sequences {aj, as, ..., a,} and {by,
b3, ..., bn}, a sequence {y1, ¥2, ..., Y2n—-1} is computed from
n
Yi =Ea,'_.j+1bj, 1<i<2n—1,
i=1

where @ = 0 if k <0 or k > n. For example, when n =3,

v = aiby,

Y2 = aibs+ aszby,

ys = a1bs+ azbs + asby,
Ya = azb3z+ aszby,

ys = agba.

Express this computation as a matrix-by-vector product, and show how it can
be performed on a linear array.

Show how algorithm LINEAR ARRAY BINARY COUNTER of Section 7.4.1

can be used to generate all subsets of a set S of m elements.
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Design an algorithm for the linear array that generates subsets of a set in
the minimal-change order (as defined in Section 7.4.4). In other words, each
subset should differ from the previous one in the least possible way.

An n-subset of a set of m elements is a subset with exactly n members. Com-
binations of n out of m elements are n-subsets. Show how an algorithm for
generating binary strings can be used to generate n-subsets.

Given a sequence S = {s1, 82, ..., Sm} of arbitrary elements, an n-variation
of S is a string v vs...v, such that v; € S for all 1 < ¢ < n. Note that
repeated elements are allowed. For example, DCABA and ACCDD are both
5-variations of {A, B,C,D}. The number of variations of n elements out of
m is m™. Special instances of m-variations are binary and decimal counters,
where S = {0,1}, and S = {0, 1, ..., 9}, respectively.

(a) Design an algorithm for generating all n-variations of S = {0, 1, ...,
m—1}.

(b) Extend your algorithm in (a) to the case where the elements of S are
arbitrary symbols, all stored in the local memory of one processor.

Algorithm LINEAR ARRAY COMBINATIONS of Section 7.4.3 works for the
case where S = {1, 2, ..., m}. Design a linear array algorithm for generating
all n-combinations of a set of m arbitrary elements. One of the processors is
allowed to store all the elements of S.

A composition of a positive integer m into n parts (or n-composition) is any
sequence {1, Z2, ..., Tn } of positive integers such that =1 +z2+- - +z, = m.
Show how an algorithm for generating n-combinations of m elements can be
used to generate all n-compositions of m.

Show how an algorithm for generating all subsets of a set can be used to
generate compositions of an integer into any number of parts.

Design a parallel algorithm for generating compositions of an integer m, given
that the largest part in each composition is k, for some integer k < m.

A combination of n out of m elements with repetitions is an unordered set
of n elements taken from a set of m elements such that elements are allowed
to repeat. In other words, z123 ... 2, is a combination with repetitions from
§={1,2,...,m}ifandonly if 1 <z <72 <--- < zn < m. Design an
algorithm for generating combinations with repetitions on a linear array of
Processors.

Use the split-and-plan technique to design an algorithm for generating all
permutations of n arbitrary elements on a linear array of n processors, in
lezicographic order.
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7.29

7.30

7.31
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7.34
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Let S be a set of m arbitrary elements. An n-permutation of S is obtained
by selecting n distinct elements of S and arranging them in some order. (See
Example 7.9.) Two n-permutations are distinct if they differ with respect to
the elements they contain or with respect to the order of the elements. Design
a parallel algorithm for generating all n-permutations of S.

Design a linear array algorithm for generating random permutations of n ele-
ments.
A permutation of the sequence S = {s1, 82, ..., 8p} is a derangement if

s; does not appear in (its identity) position ¢, for all ¢, 1 < ¢ < n. Thus,
for n = 5, 8353855184 and s5s48283s; are derangements. There are D, =
(n—1)(Dp—1 + Dp_2) derangements of n elements, with Dy =1 and D, =0,
requiring Q(nD,) operations to be generated. Describe an algorithm that
uses the split-and-plan technique to generate all derangements of n arbitrary
elements on a linear array of n processors.

A partition of an integer n is given by a sequence {z1, 2, ..., T} of positive
integers, where 71 > 22 > -+- 2 T, and 1 + 22 + -+ + T, = n. Design a
parallel algorithm for generating all partitions of an integer:

(a) Into m parts.
(b) Into any number of parts.

Let S be a set of n elements. An equivalence relation (or partition) of S
consists of subsets S;, Ss, ..., Si whose union is equal to S, such that the
intersection of any two subsets is empty. Design a parallel algorithm for
generating all equivalence relations of a set.

An m-ary tree is a data structure with n nodes that either is empty (i.e.,
n = 0) or consists of a root and m disjoint children, each of which is the root
of an m-ary subtree. Design a parallel algorithm for generating all m-ary trees
with n nodes.

A sequence of n left parentheses and n right parentheses is balanced if the
number of right parentheses encountered when scanning from left to right
never exceeds the number of left parentheses. (See Problem 4.31.)

(a) Show how an algorithm for generating binary trees on n nodes can be used
to generate all balanced sequences of (n left and n right) parentheses.

(b) Design a parallel algorithm different from the one in (a) for generating
balanced sequences of parentheses.

Suppose that each instance of a combinatorial object consists of n elements.
When n processors are available on a linear array, each processor can be made
responsible for producing one element. This approach was used in this chapter.
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7.37

7.38

7.39

7.40

7.41

7.42

7.43

7.44
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Now, let the number of processors be N, where N < n or N > n. In this
case, an adaptive algorithm is needed that adjusts its behavior according to
the number of available processors. Discuss various approaches to obtaining
adaptive algorithms for generating combinatorial objects in parallel.

In this chapter, when deriving a lower bound on the number of operations
required to generate all instances of a combinatorial object, we took into
account the number of operations needed to actually produce as output each
instance in full. For example, all permutations of n elements require Q(nnt)
operations to be generated. An alternative definition simply takes into account
the number of operations required to “create” each instance, without actually
producing it in full as output. According to this second definition, the lower
bound on generating all permutations of n elements is ((n!), since it may be
possible to “create” each permutation from the previous one using a constant
number of operations. Discuss approaches to designing parallel algorithms
(for generating combinatorial objects) that are cost optimal under the new
definition.

Given two n-bit numbers, show how they can be multiplied on a 2n-processor
linear array, and analyze the running time of your algorithm.

Extend the algorithm of Problem 7.38 so that the linear array multiplies two
pairs of n-bit numbers in about the same time as it multiplies one pair.

Design an algorithm for dividing an integer z by an integer y on a linear array
of processors. Make any appropriate assumptions about the input and the
form of the output.

Pattern matching in strings is the problem of determining whether a string S;
of m symbols occurs within a string S; of n symbols. For example, S; = ABA
occurs within S; = AACCAABAC. Design an algorithm for solving this
problem on a linear array of processors.

Let W be a string of symbols from a given finite alphabet. The reverse of W,
denoted W, consists of the symbols of W listed backwards. Given a string W,

design an algorithm for determining, on a linear array of processors, whether
W =WZE,

Given two sequences X and Y of symbols, a third sequence Z is a common
subsequence of X and Y if Z is a subsequence of both X and Y. For example,
if X = {a,c,b,¢c,d,a} and Y = {b,qa,c,c,b,a}, then Z = {¢,c,a} is a common
subsequence of X and Y. Design a linear array algorithm that finds the
longest common subsequence of two given sequences X and Y.

Given a sequence X = {z;, =3, ..., zn} of distinct integers, an increasing
subsequence of X is a subsequence {z;, z;, ..., zx}, where i < j < --- < k
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and z; < ; < --- < zi. Design a linear array algorithm that finds the longest
increasing subsequence of a given sequence X.

7.45 Let X = z123...2, and ¥ = y192 ...y be two strings of symbols from a
finite alphabet. It is required to change X symbol by symbol, until it turns
into Y. This is done by insertion, deletion, or replacement of symbols. It is
required to minimize the number of single-symbol changes. Design a linear
array algorithm to solve this problem.

7.46 Design an algorithm for computing the discrete Fourier transform on a linear
array, and analyze the running time of the algorithm.

7.47 Given two sequences of weights {wo, wy, ..., ws} and {vy, vs, ..., v}, a
sequence of initial values {y—x, ¥—k+1, ..., y~1}, and an input sequence {z_p,
T—p+1, ---, To, T1, --+, Tn}, & Process known as filtering calls for computing
the output sequence {yo, y1, ..., Yyn} Whose elements are defined by

h k
Y = ijmi_j =+ Z UVjYi—j-
j=0 j=1

Design a linear array algorithm for filtering.

7.48 Let U = {ug, u1, ..., un—1} and V = {vg, v1, ..., vn—1} be two given
sequences of values. The correlation between U and V is defined as
R nA — BC

((nD — B*)(nE - C?))1/2’

where
n—1 n—1 n—1 n-1 n-—-1
= . — . — . — 2 —_ 2
A= E u;jvj, B—Zu], C—Zv], D—Zuj, andE—Evj.
=0 =0 J=0 J=0 j=0

Design an algorithm for computing R on a linear array.

7.49 Describe a linear array algorithm for computing the convex hull of a set of n
points in the plane (as defined in Example 4.7)
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allel algorithms for generating combinatorial objects; see, for example, Akl [20],
Akl et al. [41], Chan and Akl [134], Cosnard and Ferreira [186], and Gupta and
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and compositions (see Akl and Stojmenovié [55]), subsets and set partitions (see
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