E B R & #% 3

The Design and Analysis
of Computer Algorithms

Skl

(R EIAR)

[%] Aho, Hopcroft, Uliman

3£ EERTRRERLHTES »
BRI S AR ATIZH -
EBREHNRFRHETHELES »

’
m T8 R A% 4 L

www.infopower.com.cn

m N R R F W

The Design and Analysis
of Computer Algorithms

Wikt 5o hr

(B HIR)

EMJ&%ME
WO E

LR X

The Design and Analysis of Computer Algorithms (ISBN 0-201-00029-6)
Aho, Hopcroft, Ullman

Copyright © 1974 Addison Wesley Publishing Company.

Original English Language Edition Published by Addison Wesley Publishing Company.
All rights reserved.

Reprinting edition published by PEARSON EDUCATION ASIA LTD and

CHINA ELECTRIC POWER PRESS, Copyright © 2003.

A 5 ENAR H Pearson Education #AU [E L A I ARALFE T A (B, IR HIITEX MG
HDERSE) REHR. KT,
REWMEBEFT, TEUEMF XEHRPDRABEHERTHS .

A 153 WS# Pearson Education (HFE#H ARER) BOLPithing, EHEEABHE.
For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong
SAR and Macao SAR).

R THEARJMMEEN (ROfFEREERS, ®ITRITRX AP EG B HERT.
EEHENEEFESEEIES: BEF: 01-2003-1016

EBEM&ME (CIP) ¥R

BN / GB) I (Aho, AV.) SFE. —HHA. —Ib. PEES MR, 2003
(RBRBE RS

ISBN 7-5083-1804-8

1.8, E. HNOBETHEN-FERT -1

OB THEN ~EES T —%L V.TP301.6

o B A A B 154 CIP BB (2003) % 086085 %

AN B B FRRARERY
&) % Byt Ea GEERBD
b #: (3£) Aho, Hopcroft, Ullman

wWEwEE: B
k1T hERHHMH
itk JbERTZAEAEK6T MR 4RES: 100044

Big: (010) 88515918 £ HE: (010) 88518169
B OB ILEBESARAE
o A 787X1092 1/16 Bl 3k: 3025
% 5: ISBN 7-5083-1804-8
B R 200311 HIERE R 20034E11 B % —IKEN k!

E #r: 55.00 7%
MRINERE BELR

THE DESIGN
AND ANALYSIS
OF

COMPUTER
ALGORITHMS

PREFACE

The study of algorithms is at the very heart of computer science. In recent
years a number of significant advances in the field of algorithms have been
made. These advances have ranged from the development of faster algorithms,
such as the fast Fourier transform, to the startling discovery of certain natural
problems for which all algorithms are inefficient. These results have kindled
considerable interest in the study of algorithms, and the area of algorithm de-
sign and analysis has blossomed into a field of intense interest. The intent of
this book is to bring together the fundamental results in this area, so the uni-
fying principles and underlying concepts of algorithm design may more easily
be taught.

THE SCOPE OF THE BOOK

To analyze the performance of an algorithm some model of a computer is
necessary. Our book begins by formulating several computer models which
are simple enough to establish analytical results but which at the same time
accurately reflect the salient features of real machines. These models include
the random access register machine, the random access stored program ma-
chine, and some specialized variants of these. The Turing machine is intro-
duced in order to prove the exponential lower bounds on efficiency in Chapters
10 and 11. Since the trend in program design is away from machine language,
a high-level language called Pidgin ALGOL is introduced as the main vehicle
for describing algorithms. The complexity of a Pidgin ALGOL program is
related to the machine models.

The second chapter introduces basic data structures and programming
techniques often used in efficient algorithms. It covers the use of lists, push-
down stores, queues, trees, and graphs. Detailed explanations of recursion,
divide-and-conquer, and dynamic programming are given, along with examples
of their use.

Chapters 3 to 9 provide a sampling of the diverse areas to which the funda-
mental techniques of Chapter 2 can be applied. Our emphasis in these chap-
ters is on developing algorithms that are asymptotically the most efficient
known. Because of this emphasis, some of the algorithms presented are suit-
able only for inputs whose size is much larger than what is currently encoun-

vi PREFACE

tered in practice. This is particularly true of some of the matrix multiplication
algorithms in Chapter 6, the Schonhage-Strassen integer-multiplication algo-
rithm of Chapter 7, and some of the polynomial and integer algorithms of
Chapter 8.

On the other hand, most of the sorting algorithms of Chapter 3, the search-
ing algorithms of Chapter 4, the graph algorithms of Chapter $, the fast Fourier
transform of Chapter 7, and the string-matching algorithms of Chapter 9 are
widely used, since the sizes of inputs for which these algorithms are efficient
are sufficiently small to be encountered in many practical situations.

Chapters 10 through 12 discuss lower bounds on computational com-
plexity. The inherent computational difficulty of a problem is of universal
interest, both to program design and to an understanding of the nature of com-
putation. In Chapter 10 an important class of problems, the NP-complete
problems, is studied. All problems in this class are equivalent in computa-
tional difficulty, in that if one problem in the class has an efficient (polynomial
time-bounded) solution, then all problems in the class have efficient solutions.
Since this class of problems contains many practically important and well-
studied problems, such as the integer-programming problem and the traveling
salesman problem, there is good reason to suspect that no problem in this class
can be solved efficiently. Thus, if a program designer knows that the problem
for which he is trying to find an efficient algorithm is in this class, then he may
very well be content to try heuristic approaches to the problem. In spite of the
overwhelming empirical evidence to the contrary, it is still an open question
whether NP-complete problems admit of efficient solutions.

In Chapter 11 certain problems are defined for which we can actually
prove that no efficient algorithms exist. The material in Chapters 10 and 11
draws heavily on the concept of Turing machines introduced in Sections 1.6
and 1.7.

In the final chapter of the book we relate concepts of computational dif-
ficulty to notions of linear independence in vector spaces. The material in this
chapter provides techniques for proving lower bounds for much simpler prob-
lems than those considered in Chapters 10 and 11.

PREFACE vii

THE USE OF THE BOOK

This book is intended as a first course in the design and analysis of algorithms.
The emphasis is on ideas and ease of understanding rather than implementa-
tion details or programming tricks. Informal, intuitive explanations are often
used in place of long tedious proofs. The book is self-contained and assumes
no specific background in mathematics or programming languages. However,
a certain amount of maturity in being able to handle mathematical concepts is
desirable, as is some exposure to a higher-level programming language such as
FORTRAN or ALGOL. Some knowledge of linear algebra is needed for a
full understanding of Chapters 6, 7, 8, and 12.

This book has been used in graduate and undergraduate courses in algo-
rithm design. In a one-semester course most of Chapters 1-5 and 9-10 were
covered, along with a smattering of topics from the remaining chapters. In
introductory courses the emphasis was on material from Chapters 1-5, but
Sections 1.6, 1.7, 4.13, 5.11, and Theorem 4.5 were generally not covered.
The book can also be used in more advanced courses emphasizing the theory of
algorithms. Chapters 6-12 could serve as the foundation for such a course.

Numerous exercises have been provided at the end of each chapter to
provide an instructor with a wide range of homework problems. The exercises
are graded according to difficulty. Exercises with no stars are suitable for in-
troductory courses, singly starred exercises for more advanced courses, and
doubly starred exercises for advanced graduate courses. The bibliographic
notes at the end of every chapter attempt to point to a published source for
each of the algorithms and results contained in the text and the exercises.

ACKNOWLEDGMENTS

The material in this book has been derived from class notes for courses taught
by the authors at Cornell, Princeton, and Stevens Institute of Technology. The
authors would like to thank the many people who have critically read various
portions of the manuscript and offered many helpful suggestions. In particular
we would like to thank Kellogg Booth, Stan Brown, Steve Chen, Allen Cypher,

vii PREFACE

Arch Davis, Mike Fischer, Hania Gajewska, Mike Garey, Udai Gupta,
Mike Harrison, Matt Hecht, Harry Hunt, Dave Johnson, Marc Kaplan, Don
Johnson, Steve Johnson, Brian Kernighan, Don Knuth, Richard Ladner,
Anita LaSalle, Doug Mcllroy, Albert Meyer, Christos Papadimitriou, Bill
Plauger, John Savage, Howard Siegel, Ken Steiglitz, Larry Stockmeyer, Tom
Szymanski, and Theodore Yen.

Special thanks go to Gemma Carnevale, Pauline Cameron, Hannah
Kresse, Edith Purser, and Ruth Suzuki for their cheerful and careful typing of
the manuscript.

The authors are also grateful to Bell Laboratories and Cornell, Princeton,
and the University of California at Berkeley for providing facilities for the
preparation of the manuscript.

June 1974

-
Om<
o>

....._.._.................
W VL E WL —

CONTENTS

Models of Computation

Algorithms and theircomplexity0u.... 2
Random access machines 5
Computational complexity of RAMprograms 12
Astoredprogrammodel 15
Abstractionsof the RAM 19
A primitive model of computation; the Turing machine. 25
Relationship between the Turing machine and RAM models. 31
Pidgin ALGOL —a high-level language 33
Design of Efficient Algorithms

Data structures: lists, queues,andstacks. 44
Set representations e e e ees 49
Graphs. e 50
Trees. . . . e e e 52
Recursion i e e e 35
Divide-andconquerttt 60
Balancing, 65
Dynamicprogramming v ittt 67
Epilogue e 69
Sorting and Order Statistics

The sorting problem 76
Radix sorting ' uuuunnui. 77
Sorting by comparisons, 86
Heapsort—an O(n logn)comparisonsort. 87
Quicksort—an O(n log n) expected time sort. e e e e 92
Order statistics0 vttt e b e e e 97
Expected time fororderstatistics. 100
Data Structures for Set Manipulation Problems

Fundamental operationsonsets. 108
Hashing i, 111
Binary search 113
Binary search trees.ottt e 115
Optimal binary searchtrees 0. uu.... 119
A simple disjoint-set union algorithm 124

X

4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

5.1
5.2
53
5.4
5.5
5.6
5.7
58
5.9
5.10
5.11

6.1
6.2
6.3
6.4
6.5
6.6

7.1

7.3
7.4
15

CONTENTS

Tree structures for the UNION-FIND problem.
Applications and extensions of the UNION-FIND algorithm.
Balanced treeschemes,
Mergeable heaps
Concatenablequeues.
Partitioning
Chaptersummary. ittt it ittt e et e

Algorithms on Graphs

Minimum-cost spanning trees 0 i .
Depthfirstsearch.
Biconnectivity. e e e e
Depth-first searchof adirectedgraph.
Strongceonnectivity L. e e
Path-finding problems
A transitive closurealgorithm
A shortest-path algorithm0.eo...
Path problems and matrix multiplication.
Single-sourceproblems e
Dominators in a directed acyclic graph: putting the concepts together . .

Matrix Multiplication and Related Operations

BasiCs it e e e e e e e e e e e
Strassen’s matrix-multiplication algorithm
Inversionof matrices.
LUP decomposition of matrices. v v v v v v oo v v s v v ue
Applications of LUP decomposition
Boolean matrix multiplication

The Fast Fourier Transform and its Applications

The discrete Fourier transform anditsinverse.
The fast Fourier transform algorithm
The FFT using bitoperationst ieeunnnns
Products of polynomials
The Schonhage~Strassen integer-multiplication algorithm

8.1
8.2

8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12

9.1
9.2
9.3
94
9.5

10

10.1
10.2
10.3
10.4
10.5
10.6

11

1.t
112
1.3
11.4

CONTENTS xi

Integer and Polynomial Arithmetic

The similarity between integers and polynomials 278
Integer multiplication and division o .o e 279
Polynomial multiplication and division. 286
Modular arithmetic & . i e e e e 289
Modular polynomial arithmetic and polynomial evaluation. 292
Chinese remaindering o e 294
Chinese remaindering and interpolation of polynomials. 298
Greatest common divisors and Euclid’s algorithm 300
An asymptotically fast algorithm for polynomial GCD’s 303
Integer GCD’s o i it e e e e 308
Chinese remaindering revisited 000 310
Sparsepolynomials oo e 311

Pattern-Matching Algorithms

Finite automata and regular expressions 318
Recognition of regular expression patterns. 326
Recognition of substrings 0 e 329
Two-way deterministic pushdownautomata. 335
Position trees and substring identifiers00 o 346
NP-Complete Problems

Nondeterministic Turing machines 364
Theclasses Pand /P i i i it it e e e 372
Languagesand problems« it 374
NP-completeness of the satisfiability problem. 377
Additional NP-complete problems 384
Polynomial-space-bounded problems 395
Some Provably Intractable Problems

Complexityhierarchies. v 406
The space hierarchy for deterministic Turing machines. 407
A problem requiring exponential timeandspace. 410

A nonelementary problem

xii CONTENTS

12

12.1
12.2
123
12.4
12.5
12.6
12.7

Lower Bounds on Numbers of Arithmetic Operations

Fields e 428
Straight-line code revisited 429
A matrix formulation ofproblems 432
A row-oriented lower bound on multiplications 432
A column-oriented lower bound on multiplications. 435
A row-and-column-oriented bound on muitiplications 439
Preconditioning vttt i e e 442
Bibliography it e e e e 452

MODELS
OF
COMPUTATION

CHAPTER 1

2 MODELS OF COMPUTATION 1.1

Given a problem, how do we find an efficient algorithm for its solution? Once
we have found an algorithm, how can we compare this algorithm with other
algorithms that solve the same problem? How should we judge the goodness
of an algorithm? Questions of this nature are of interest both to programmers
and to theoretically oriented computer scientists. In this book we shall ex-
amine various lines of research that attempt to answer questions such as these.

In this chapter we consider several models of a computer—the random
access machine, the random access stored program machine, and the Turing
machine. We compare these models on the basis of their ability to reflect
the complexity of an algorithm, and derive from them several more specialized
models of computation, namely, straight-line arithmetic sequences, bitwise
computations, bit vector computations, and decision trees. Finally, in the
last section of this chapter we introduce a language called “‘Pidgin ALGOL”
for describing algorithms.

1.1 ALGORITHMS AND THEIR COMPLEXITY

Algorithms can be evaluated by a variety of criteria. Most often we shall
be interested in the rate of growth of the time or space required to solve larger
and larger instances of a problem. We would like to associate with a problem
an integer, called the size of the problem, which is a measure of the quantity
of input data. For example, the size of a matrix multiplication problem might
be the largest dimension of the matrices to be multiplied. The size of a graph
problem might be the number of edges.

The time needed by an algorithm expressed as a function of the size of
a problem is called the time complexity of the algorithm. The limiting be-
havior of the complexity as size increases is called the asymptotic time com-
plexity. Analogous definitions can be made for space complexity and asymp-
totic space complexity.

It is the asymptotic complexity of an algorithm which ultimately deter-
mines the size of problems that can be solved by the algorithm. If an algo-
rithm processes inputs of size n in time cn® for some constant c, then we say
that the time complexity of that algorithm is O(n?), read “order n:.” More
precisely, a function g(n) is said to be O(f(n)) if there exists a constant ¢
such that g(n) < cf(n) for all but some finite (possibly empty) set of non-
negative values for n. ,

One might suspect that the tremendous increase in the speed of calcula-
tions brought about by the advent of the present generation of digital com-
puters would decrease the importance of efficient algorithms. However, just
the opposite is true. As computers become faster and we can handle larger
problems, it is the complexity of an algorithm that determines the increase
in problem size that can be achieved with an increase in computer speed.

Suppose we have five algorithms A,-As with the following time com-
plexities.

Algorithm

ALGORITHMS AND THEIR COMPLEXITY

Time complexity

27!

The time complexity here is the number of time units required to process an
input of size n. Assuming that one unit of time equals one millisecond, algo-
rithm A4, can process in one second an input of size 1000, whereas algorithm
Ajy can process in one second an input of size at most 9. Figure 1.1 gives the
sizes of problems that can be solved in one second, one minute, and one hour
by each of these five algorithms.

Ti Maximum problem size

ime

Algorithm | complexity 1 sec 1 min 1 hour
A, n 1000 6 X 10* | 3.6 X 10¢
A, nlog n 140 4893 2.0 X 10®
Az n 31 244 1897
A, n 10 39 153
As 2" 9 15 21

Fig. 1.1. Limits on problem size as determined by growth rate.

Maximum Maximum
Time problem size problem size
Algorithm complexity before speed-up after speed-up
A, n 5 10s,
A, nlogn s Approximately 10s,
for large s,
A, n 53 3,165,
A, n 54 2.155,
Ay pA Ss ss+ 3.3

Fig. 1.2. Effect of tenfold speed-up.

1 Unless otherwise stated, all logarithms in this book are to the base 2.

4 MODELS OF COMPUTATION 1.1

Suppose that the next generation of computers is ten times faster than the
current generation. Figure 1.2 shows the increase in the size of the problem
we can solve due to this increase in speed. Note that with algorithm A5, a
tenfold increase in speed only increases by three the size of problem that can
be solved, whereas with algorithm 4; the size more than triples.

Instead of an increase in speed, consider the effect of using a more efficient
algerithm. Refer again to Fig. 1.1. Using one minute as a basis for com-
parison, by replacing algorithm A, with A; we can solve a problem six times
larger; by replacing 4, with 4, we can solve a problem 125 times larger. These
results are far more impressive than the twofold improvement obtained by a
tenfold increase in speed. If an hour is used as the basis of comparison, the
differences are even more significant. We conclude that the asymptotic com-
plexity of an algorithm is an important measure of the goodness of an algorithm,
one that promises to become even more important with future increases in
computing speed.

Despite our concentration on order-of-magnitude performance, we should
realize that an algorithm with a rapid growth rate might have a smaller con-
stant of proportionality than one with a lower growth rate. In that case, the
rapidly growing algorithm might be superior for small problems, possibly even
for all problems of a size that would interest us. For example, suppose the
time complexities of algorithms A4,, 4,, A5, A,, and A5 were really 1000n,
100n log n, 10n2, n*, and 2". Then A; would be best for problems of size
2 < n=9,A4; would be best for 10 < n < 58, 4, would be best for 59 = n =<
1024, and A, best for problems of size greater than 1024.

Before going further with our discussion of algorithms and their com-
plexity, we must specify a model of a computing device for executing algo-
rithms and define what is meant by a basic step in a computation. Unfortu-
nately, there is no one computational model which is suitable for all situations.
One of the main difficulties arises from the size of computer words. For ex-
ample, if one assumes that a computer word can hold an integer of arbitrary
size, then an entire problem could be encoded into a single integer in one com-
puter word. On the other hand, if a computer word is assumed to be finite,
one must consider the difficulty of simply storing arbitrarily large integers, as
well as other problems which one often avoids when given problems of modest
size. For each problem we must select an appropriate model which will
accurately reflect the actual computation time on a real computer.

In the following sections we discuss several fundamental models of com-
puting devices, the more important models being the random access machine,
the random access stored program machine, and the Turing machine. These
three models are equivalent in computational power but not in speed.

Perhaps the most important motivation for formal models of computation
is the desire to discover the inherent computational difficulty of various prob-
lems. We would like to prove lower bounds on computation time. In order
to show that there is no algorithm to perform a given task in less than a certain

RANDOM ACCESS MACHINES 5

amount of time, we need a precise and often highly stylized definition of what
constitutes an algorithm. Turing machines (Section 1.6) are an example of
such a definition.

In describing and communicating algorithms we would like a notation
more natural and easy to understand than a program for a random access ma-
chine, random access stored program machine, or Turing machine. For this
reason we shall also introduce a high-level language called Pidgin ALGOL.
This is the language we shall use throughout the book to describe algorithms.
However, to understand the computational complexity of an algorithm de-
scribed in Pidgin ALGOL we must relate Pidgin ALGOL to the more formal
models. This we do in the last section of this chapter.

1.2 RANDOM ACCESS MACHINES

A random access machine (RAM) models a one-accumulator computer in
which instructions are not permitted to modify themselves.

A RAM consists of a read-only input tape, a write-only output tape, a
program, and a memory (Fig. 1.3). The input tape is a sequence of squares,
each of which holds an integer (possibly negative). Whenever a symbol is
read from the input tape, the tape head moves one square to the right. The
output is a write-only tape ruled into squares which are initially all blank.
When a write instruction is executed, an integer is printed in the square of the

x x x Read-only
! ! " _| input tape

e - - = - 3 ————————————————— 1
| !
{ ro Accumuiator :
| | Location ’ I
! | counter Program 1]
' [
: n |

¥ |
| |
i r
| 1
I I
! : 1
' i
I Memol |
Y N Y]

Yy 1 £}
Write-only
output tape

Fig. 1.3 A random access machine.

