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Preface

The successful union of a sperm and egg, eventually resulting in the
formation of a new individual, is an impressive example among biolog-
ical phenomena of the operation of sensitive control mechanisms. In-
deed, Professor Einstein’s famous admonition to the quantum physi-
cists of his day that “God does not throw dice” finds dramatic.
application in describing the harmonious interactions required of
fertilization.

An understanding of the molecular mechanisms involvedin animal
fertilization has just begun. Studies of invertebrate gamete interac-
tions, particularly those of the sea urchin, have laid much of the
groundwork toward acquiring an understanding of these systems. The
availability of large numbers of gametes capable of undergoing syn-
chronous fertilization in an inexpensive medium has been a blessing
for students of fertilization and early development for more than a
century. Those working with mammaliar. gametes, on the other hand,
have had to struggle with less than abundant quantities of cells and
artificial in vitro systems, the use of which have, nevertheless, begun
to yield answers. Of course mammalian fertilization does not occur in
the test tube (normally), so a complete understanding of tkis phe-
nomenon must take into account the influence of the in vivo environ-
ment, still a formidable consideration.

As is so common in science, methodological difficulties discourage
many from entering a given field of study; mammalian fertilization is
no exception. However, with the development of systems for increasing
the yield of gametes, in particular of the egg, combined with highly
sensitive analytical techniques, both of which are discussed in some of
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xii Preface

the chapters in this volume, it is hoped that more investigators will be
induced to enter this area.

The purpose of this book is to review many of the contributions that
the study of both invertebrate and vertebrate systems has made to-
ward elucidating the mechanism of animal fertilization. The majority
of the chapters deals with the mammal, which simply reflects the cur-
rent prejudice of the editor. Informally, the chapters can be grouped
into the following sections: (1) formation of gametes {cogenesis and
‘spermiogenesis), (2) composition and response of gamete surfaces (zona
pellucida, sperm capacitation, and membrane behavior as reflected by
ionic movements in invertebrate egg), (3) prepenetration interactions
between sperm and eggs of both invertebrates and mammals, (4) early
postfertilization changes (block to polyspermy in the invertebrate,
mammalian, and anuran egg; early synthetic and other changes in the
fertilized mammalian egg), and, finally, (5) aspects of in vivo fertiliza-
tion in the mammal (interaction of sperm and egg and gamete trans-
port in the female reproductive tract).

John F. Hartmann
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I. INTRODUCTION

The unfertilized mammalian egg represents the culmination of
oogenesis, a complex developmental process that begins in the fetus
and terminates with ovulation by sexually mature offspring. As a re-
sult of the process of oogenesis each ovulated egg has the potential to
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2 Paul M. Wassarman

give rise to a new individual who will express and maintain the char-
acteristics of the species.
Among the consequences of oogenesis are an increase in genotypic
variation due to crossing over and recombination, a decrease in gamete
- pleidy to the haploid state, and the accumulation of macromolecules
and organelles that will be used to regulate and sustain early embryo-
genesis. It is the latter aspect of mammalian oogenesis that will be
emphasized here. In particular, this chapter reviews synthetic events
that occur during cocyte growth and during conversion of oocytes into
unfertilized eggs in the mouse. This chapter is not intended to be a
comprehensive survey of the field or of all of the relevant literature.
Rather, it is intended to be more of an introduction to this important
aspect of mammalian developmental biology.

. OOGENESIS IN THE MOUSE: A PRECIS

A brief description of cogenesis in the mouse is presented below and
1s summarized in Fig. 1. The information presented is drawn from a
variety of sources to which the reader is referred for a more detailed
account of the subject (Parkes, 1956; Zuckerman, 1962; Austin and
Short, 1972; Biggers and Schuetz, 1972; Zuckerman and Weir, 1977;
Jones, 1978; Van Blerkom and Motta, 1979). The text edited by Jones
(1978) is, perhaps, the most up-to-date, comprehensive treatment of
mammalian oogenesis available.

A. Appearance of Qocytes during Fetal Development

Oogenesis in the mouse begins with the formation of primordial
germ cells in presomite embryos. In the 8-day-old embryo, containing
four pairs of somites, about 100 primordial germ cells are recognizable
due to their distinctive morphology. These large cells are found in that
region of the allantois arising from the primitive streak. Conse-
quently, the embryonic rudiment of the allantois and the caudal end of
the primitive streak may be considered the regions of primordial germ
cell formation. The primordial germ cells migrate by ameboid move-
ment into the endoderm and then along the dorsal mesentery of the
genital ridges found in the roof of the coelom. These primordial germ
cells are the sole source of adult germ cells. In the 13-day-old embryo
(5260 pairs of somites), containing a differentiated ovary, migration
of primordial germ cells is complete, with virtually all of the cells
converted to actively multiplying oogonia (= 95% of the germ cells) or
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Fig. 1. A summary of the sequence of events that occurs during oogenesis in the
mouse. For details see Section II,LA-D.

to oocytes (= 5% of the germ cells) in leptotene of the first meiotic
prophase. By day 14 of embryogenesis (61-62 pairs of somites) the
germ cell population is about equally divided between oogonia and
oocytes, and by day 17 (full quota of 65 pairs of somites) the ovary
contains only cocytes at various stages of the first meiotic prophase.

As early as day 12 of embryogenesis, a few oogonia enter the prelep-
totene and then leptontene stage of the first meiotic prophase. It is
during preleptotene (interphase following the last mitotic division of
oogonia) that the final DNA synthesis takes place in preparation for
meiosis. This synthetic activity signals the transformation of cogonia
into oocytes. Oocytes progress rapidly through leptotene (3—6 hours)
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and then take 12-40 hours to complete zygotene. During zygotene
homologous chromosomes pair and synapse to form what often appear
to be single chromosomes but are actually bivalents composed of four
chromatids. By day 16 of embryogenesis nearly all oocytes are in
pachytene of the first meiotic prophase; a stage that lasts about 60
hours and involves genetic crossing over and recombination. There-
fore, nuclear progression from leptotene through pachytene takes ap-
proximately 4 days to complete. The first oocytes in the diplotene stage
of the first meiotic prophase are seen by day 18 of embryogenesis, with-
their chromosomes exhibiting the chiasmata that result from crossing
over. By the time of parturition a majority of oocytesshave entered the
late diplotene, or so-called dictyate stage, and by day 5 postpartum
nearly all ooctyes have reached the dictyate stage where they will
remain until stimulated to resume meiosis at the time of ovulation.

B. Growth of Qocytes and Follicles

Shortly after birth, the mouse ovary is populated with thousands (=
11,000) of small (= 12 um in diameter), primary oocytes arrested in
late prophase of meiosis and enclosed within several squamous follicu-
lar cells. There is a loss of about 50% (= 6000) of these oocytes during
the first 2 weeks after birth, attributable in large measure to oocytes
leaving the ovary through the surface epithelium. However, in the
first 2 weeks after birth more oocytes begin to grow (= 600 oocytes, or
= 10% of the total population) than at any other period in the lifetime
of the mouse. Commencement of cocyte growth is apparently regulated
within the ovary, the number of oocytes entering the growth phase
being a function of the size of the pool of nongrowing oocytes. The
oocyte and its surrounding follicle grow coordinately, progressing
through a series of definable morphological stages. The oocyte com-
pletes its growth in the adult mouse before the formation of the follicu-
lar antrum; consequently, the vast majority of follicle growth occurs
after the oocyte has stopped growing. Growth is continuous, ending
either in ovulation of a matured oocyte (unfertilized egg) or degenera-
tion (atresia) of the oocyte and its follicle.

Completion of oocyte growth in the mouse takes approximately 2
weeks, a relatively short period of time in comparison to the months or
years required for completion of oocyte growth in many nonmam-
malian animal species. The oocyte grows from a diameter of about 12
pm (volume of = 0.9 pl) to a terminal diameter of about 85 pm (volume

of = 320 pl), not including the zona pellucida. Therefore, during its
growth phase, while continually arrested in dictyate of the first meio-
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Fig. 2. Light (A) and transmission electron (B,C) micrographs of isolated, fully
grown mouse oocytes with their adherent cumulus cells. The arrows in panei C indicate
the positions of junctions between plasma membranes of an oocyte and an innermost
cumulus cell: zp, Zona pellucida. ’
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