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PREFACE

“Some books are to be tasted, others to be swallowed, and some
Jew to be chewed and digested ; that is, some books are to be read
only in parts; others to be read but not curiously; and some few to
be read wholly and with diligence and attention.”

Francis Bacon (1561 —1626)

This textbook is intended primarily for the senior undergraduate
course in elastic mechanics and finite element fundamentals
teaching in English for Chinese students majoring in Civil
Engineering. Thus, this book has been written bearing in mind
the definition of books by Francis Bacon as quoted above; it is
needless to say that this book belongs to the third category for
senior undergraduate Chinese students.

It is generally accepted that the fundamental concepts of elastic
mechanics have been widely used at various stages by engineers
in the courses of solid mechanics, structural mechanics, geo-
mechanics and matarials engineering. The basic concepts of
elastic mechanics are used in their simpler form for the initial
analysis before preliminary design of engineering structures and
later, more advanced principles are being used for complex
‘analysis before final design. Thus, elastic mechanics plays an
important role in the curriculum for engineers. Many of the
undergraduate and graduate courses employ .the concepts of
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elastic mechanics as the basis for further development of
engineering principles. Therefore, it is necessary as a first step
to understand clearly the basic principles and the corresponding
mathematical expressions involved in elastic mechanics. So, it
is assumed that the reader has taken general physics and has a
mathematical background, which includes some familiarity with
algebra and a working knowledge of differential and integral
calculus.

Since the solutions to most of the engineering problems are
obtained by solving the governing differential equations, it is
imperative that one should learn the origin of such equations and
the basis from which they have been derived. In addition, it is
recommended that an introductory course in ordinary differential
equations or a course in advanced mathematics including
differential equations be taken prior to or concurrently with this
course in civil engineering. For this reason, attention has been
given in this book to present the derivations of various
fundamental equations in an extensive manner.

No mathematical theory can completely describe the complex
world around us. Every theory is aimed at a certain.class of
phenomena, formulates their essential features, and disregards
what is of minor importance. The theory meets its limits of
applicability where a disregarded influence becomes important.
Thus, elastic mechanics describes in many cases the stresses,
strains and displacements of actual solid bodies with high
accuracy, but it fails to produce more- than a few general
statements in the case of finite deformation, because non-linear
elasticity or anelasticity, no matter how local or how small,



PREFACE 3

attains a dominating influence.

The finite element method is the best approach available for the
numerical analysis of engineering. Although the method has been
applied to many mechanics fields, this book is devoted to the
fundamental analysis of two-dimensional elastic mechanics. The
theory requires discretization of the elastic mechanics problem
into a numerical network of finite elements and implementation of
the analysis on a digital computer. Because this book is intended
for the beginner, we have emphasized clarity in the
presentation. The user should find the explanations in essentials
to read, either as a student or as an engineer. The techniques
and computer programs described here are fundamentals and
used in an undergraduate-level course for Chinese students at
Zhejiang University for many years.

The subject matter has been presented in seven chapters. No
specific comments are warranted regarding chapter 1 which
introduces the concept of elastic mechanics. Chapters 2 and 3
deal respectively with the concept of stress and strain at a point
in a more general sense. The discussion also includes the
development of equilibrium equations, compatibility conditions
and strain-displacement relations, which are an essential part of
elasticity governing differential equation. In chapter 4, the
generalized constitutive relationship for a linearly elastic
material is presented both in isotropic and anisotropic cases. A
brief discussion on non-linear behaviours of materials is also
included in Chapter 4. Chapter 5 deals with the derivation of
fundamental equations of elasticity for solids based on the
principles discussed in chapters 2 — 4 of equations for solving
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their problems. Chapter 6 presents solutions to a number of
simple problems in elasticity mechanics. The finite element
formulation to solve two dimensional elastic problems is
presented in chapter 7. In chapter 7, the discussion involves the
theories and the FORTRAN and C** language programming of
finite element method as well as the user constructions of the
programs for analysis of two dimensional elastic mechanics
problems and corresponding numerical examples.

S. VALLIAPPAN
Ph.D., D.Sc., F. ASCE, F.IACM,
Professor of Civil Engineering,
President Australian Association;
Vice President International Association
for Computational Mechanics
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Chapter 1 INTRODUCTION

“Mechanics is the paradise of mathematical
science because here we come to the fruits of

mathematics. ”

Leonardo da Vinci (1452—1519 ), ITALY

1.1 BASIC CONCEPTS

The rapid progress in various fields of

technology has created the need for new types of structures and
structural materials, which, in turn, has involved the search for
more rational shapes and economy of materials. This, in fact,
has motivated the engineers to seek for various methods capable
of evaluating the strength and deformation characteristics of
complex structures and new materials. The branch of science,
which deals with these methods, is known as “Strength of
Materials”. Through this branch of science, engineers can obtain
simple formulae in order to arrive at a sufficiently safe solution
for a simple practical problem. However, this simplified
approach is not quite sufficient for dealing with many practical .
problems involving complex material behaviour and loading
conditions. Such problems can be solved using the more general
theory of “Elastic Mechanics”. The Elastic Mechanics can be
considered as the theoretical basis for estimating the elastic
stress and deformation of any solid structure or structural
material under the action of any general loading, whether it is
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static or dynamic.

The objective of elastic mechanics is to deal with the stress,
strain and displacement of solid materials based on a general
three-dimensional situation and on their linear behavior. While
techniques for solving problems in Elastic Mechanics and
Strength of Materials may be different, the basic principles
underlying the behavior of solids and structures are the same.
Therefore, the subject matter covered in the following chapters
consists of general states of stresses and strains and
displacements as well as constitutive relationships such as
isotropic and anisotropic elasticity pertaining to linear range of
the solid strength. The linear elasticity concept regards matter as
infinitely divisible. Thus it is valid to accept the idea of an
infinitesimal volume of materials referred to as a particle within
the continuum. The founders of the theory of elasticity, Navier
(1821) and Cauchy (1822) developed their theories on the basis
of molecular nature of matter (Ref. [1]). It is not quite
convenient in dealing with the displacements of each particular
particle in the continuum or to determine the forces or interaction
between each pair of molecules. However, it is more appropriate
to consider the material of the body as distributed continuously
throughout the whole volume filling the spaces completely
. without gaps or empty spaces and.express the field quantities
such as deformation and stress as piecewise continuous functions
of space and time.

The elastic mechanics deals with three kinds of quantities:
stresses, strains and displacements (Ref. [4~7]).
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Stresses describe forces acting inside a body. Usually they are
defined as forces (or force components) per unit of area of an
infinitesimal section. However, the bending and twisting
moments in a plane, the membrane forces in a shell, the bending
moment and the shear force in a beam, and the torque in a shaft
are also quantities of the same kind. They all describe forces or
moments transmitted from one side of a section to the other, and
they all come in pairs equal in magnitude but opposite in sense,
as they are acting on both parts of the body separated by the
section.

Strains describe local deformations, for example, the increase in
length of a line element divided by its original length (tensile
strain), or the decrease of the right angle between two line
elements (shear strain). There are more sophisticated definitions
of strain quantities, like the tensorial strain derived from the
change of square of the line element, or the logarithmic strain.
On the other hand, the curvature of a bent beam or plate and the
twist of a shaft are also strain quantities, since they describe
locai change of form without reference to an external coordinate
system.

Displacements describe the movement of a point or a line element
during the process of deformation, with reference to a fixed
coordinate system outside the deformable body. The
displacements of the theory of elasticity and the deflection of a
beam or a plate-are linear displacements; the rotation of a beam
element (the “slope” of the textbooks) is an angular
displacement.



