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Preface

Volumes 1 and 2 of The Quantum Physics of Atomic Frequency Standards, henceforth
referred to as QPAFS (1989), were written in the 1980s and were published in 1989.
They covered, in some detail, work done up to 1987 on the development of atomic
frequency standards. The text included a description of their development.at that
time, as well as a description of the research on the physics supporting that devel-
opment. Since that time, the field has remained a very active part of the research
program of many national laboratories and institutes, Work has remained intensive
in many sectors connected to the refinement of classical frequency standards based
on atoms such as rubidium (Rb), caesium (Cs), hydrogen (H), and selected ions in the
microwave range, while new projects were started in connection to the realization of
stable and accurate frequency standards in the optical range.

For example, intensive studies were made on the use of lasers in the optical pump-
ing and cooling of Rb and Cs as well as on the development of a new type of standard
based on the quantum-mechanical phenomenon called coherent population trapping
(CPT). Regarding Cs and Rb, laser cooling of atoms has made possible the realiza-
tion of an old dream in which a small blob of atoms, cooled in the microkelvin range,
is projected upward at a slow speed in the gravitational field of the earth and the
atoms fall back like water droplets in a fountain. In their path, the atoms are made
to pass through a microwave cavity, and upon falling back after having spent their
kinetic energy, pass through the same cavity, mimicking, with a single cavity, the
classical double-arm Ramsey cavity approach. The system is called atomic fountain.
Its advantage over the classical approach resides in the reduction of the width of the
resonance hyperfine line by a factor of the order of 100 relative to that observed in
the room temperature approach. The resulting line width is of the order of 1 Hz.
Work has also continued on the development of smaller H masers, in particular in
the development of passive devices and in the use of a new smaller so-called magne-
tron cavity. The advent of the solid-state laser in the form of the conventional edge-
emitting type (GaAs) and vertical structure (VCSEL) has opened the door to a new
approach in optical pumping for implementing smaller and more performing Rb and
Cs cell frequency standards.

Since the 1990s, laser cooling has been studied extensively and aside from pro-
viding a means for realizing the fountain clock mentioned above, it has allowed the
realization of clocks based on microwave transitions in ions such as mercury (Hg"),
barium (Bat*), strontium (Sr*), and ytterbium (Yb*) confined within an electromag-
netic trap.

On the other hand, intense work has been carried out in several laboratories in
extending the work done at microwave frequencies to the optical frequency range. The
gain in that approach relies mainly on the increase in the frequency of the atomic transi-
tions involved, which provides for a line width similar to that obtained in the microwave
range a resonance quality factor millions of times larger. Laser cooling has been applied
successfully to such atoms as mercury (Hg), ytterbium (Yb), and strontium (Sr)
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stored in optical lattice traps in order to reduce their thermal motion. Laser cooling
has also been used in the mono-ion trap to implement optical frequency standards. In
that case, a single ion, say Sr* or Yb™, is maintained in a Paul or Penning trap and its
motion within the trap is damped by laser cooling. Clocks at optical frequencies have
been implemented as laboratory units with unsurpassed accuracy and frequency sta-
bility reaching the 107'¢ to 10~'® range. In both cases, the clock frequency is derived
from a transition between the ground S state of the atom and an excited metastable
state with a lifetime of the order of 1 second or more leading to a very narrow
resonance line. The clock transition is detected by means of monitoring changes in
the fluorescence level created by the cooling radiation when the clock transition is
excited.

The large gap in frequency between the microwave and the optical range has
always been an roadblock in the use of optical frequencies in various applications
such as frequency standards or still high precision spectroscopy and fundamental
research. The reason is mainly due to the fact that gaps between available optical
frequencies for the realization of clocks are very large. It is extremely difficult to
connect those frequencies to the microwave range. This connection is required
because most of the applications are in the low frequency range of the spectrum and,
furthermore, because the SI (International System of Units) definition of the second
is based on a microwave hyperfine transition in Cs, in the X band. We have given in
Volume 2 of QPAFS examples of the conventional method used to make that connec-
tion. That method comprises frequency- and phase-locking together banks of lasers
with appropriate heterodyning in several steps in order to interconnect various opti-
cal frequencies to reach finally the microwave range. The connection has to be done
over a large number of steps and involves tremendous investment of space and time
to finally measure what very often happens to be just a single frequency. Such a task
has been reduced considerably by the invention of the so-called optical comb, which
comprises locking the repetition rate of a femtosecond laser to a stable atomic fre-
quency standard of high spectral purity, such as an H maser referenced in frequency
to a primary Cs atomic clock. When observed by means of a nonlinear optical fibre,
the resulting laser spectrum consists of a spectrum of sharp lines, themselves called
the teeth of the comb, which covers a frequency range of the order of 1 octave.
Frequencies over a broad range are then measured essentially in a single step on an
optical table, resulting in a considerable reduction in work and size as compared to
the previous heterodyning technique, which required entire rooms filled with lasers.

This volume covers those subjects in some detail. It is divided into five chapters.
Chapter 1 is an introduction, presenting a review of recent developments made on
the improvement of conventional atomic frequency standards described in the two
volumes of QPAFS. It highlights the main limitations of those frequency standards
and the physical basis of those limitations and outlines the progress made during the
last 25 years. Chapter 2 is a description of recent advances in atomic physics, theory
and applications, that opened new avenues. Chapter 3 is concerned with research
and development done in the development of new microwave frequency standards.
Chapter 4 describes research and development done in the optical range to implement
optical frequency standards based on new results in atomic physics as described in
Chapter 2. Chapter 5 summarizes the results in frequency stability and accuracy
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achieved with those new frequency standards and outlines selected applications.
A short reflection is included giving some insight into future work.

Such a text cannot be written without significant help from experts in the field.
We wish to recognize the contribution and collaboration of many scientists. In particu-
lar, we wish to recognize the invaluable help of André Clairon, who has read the whole
manuscript and helped in improving its exactness and completeness. We also show our
gratitude to the following scientists who helped us through their encouragement, sup-
plied original figures or material, and contributed by means of comments on various sec-
tions of the text: C. Affolderbach, A. Bauch, S. Bize, J. Camparo, C. Cohen-Tannoudji,
E. De Clercq, A. Godone, D. Goujon, S. Guérandel, P. Laurent, T. Lee, S. Micalizio,
G. Mileti, J. Morel, W.D. Phillips, P. Rochat, P. Thomann, R.E.C. Vessot, and S. Weyers.

Jacques Vanier
and

Cipriana Tomescu
University of Montreal






Introduction

This book is about recent developments in the field of atomic frequency standards,
developments that took place after the publication in 1989 of the first two volumes
with the same title. Atomic frequency standards are systems providing an electri-
cal signal at a cardinal frequency of, say, 10 MHz, a signal generated usually by
a quartz crystal oscillator locked in phase or in frequency to a quantum transition
inside an atom. The atom is selected for its properties such as easy detection of the
particular quantum transition chosen and relative independence of its frequency of
the environment. In early work, those conditions limited development around hydro-
gen and alkali atoms, which have transitions in the microwave range and could be
manipulated easily as beams or atomic vapour with the techniques available at that
time. Progress in the development of lasers and their stabilization extended that
work to the optical range. A major task encountered in the early development of
microwave standards has always been the elimination of Doppler effect. Atoms at
room temperature travel at speeds of several hundred metres per second and, conse-
quently, Doppler effect causes frequency shifts and line broadening of the resonance
signal. This effect is generally eliminated by means of various storage techniques
based on Dicke effect, or still beam techniques using the Ramsey double-arm cavity
approach. These techniques are not well adapted to optical frequencies because of
the shorter wavelengths involved. However, progress in the understanding of inter-
actions between atoms and electromagnetic interactions has provided new means
of reducing the velocity of atoms and reducing, if not eliminating, the constraints
introduced by Doppler effect.

An atomic frequency standard that is operated continuously becomes an atomic
clock. The operation is essentially a process of integration and the date set as the
constant of integration provides the basis for implementing a timescale. This is the
origin of atomic timescales, in particular the one maintained by the International
Bureau of Weights and Measures. Various systems in operation have their own
timescale, for example, the global positioning system (GPS) of the United States,
the Russian Glonass system, the Chinese Beidou system, and the European Galileo
systems under development, all playing an important role in navigation on or near
the surface of the earth.

Although time is central to physics and is used in our day-to-day life, it is a con-
cept that is difficult to grasp, let alone to define. We use it without questioning its
origin and its exact nature. It is basic in physics for describing the dynamics of sys-
tems and ensembles of systems by means of equations that model the evolution of
objects forming our universe. The concept is used as such without questioning much
its exact nature and origin. In Newtonian mechanics, objects evolve in space and
their behaviour is described by means of differential equations and functions of time
and space. Both space and time are independent and in common language they are
said to be absolute. In that context, time is not a function of space and space is not a
function of time. However, in attempts to relate mechanics and electromagnetism by
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space and time transformations, a difficulty arose. This is due to the finiteness and
invariability of the speed of light, made explicit in Maxwell’s equations, whatever
the motion of the frame of reference in which it is generated and measured. In this
context, with Einstein, Poincaré, Lorentz, Minkowski, and others, time and space
become entangled and functions of each other. There is no such thing as an absolute
space in which objects evolve in an absolute time framework, both independent of
each other. Time and space form a single four-dimensional framework and cannot be
treated independently. This concept forms the basis of the theory of relativity. This
theory has been shown to be valid through multiple experiments and verifications to
a level that raises its validity to a high degree. It should be pointed out that the most
accurate verifications were done with atomic clocks, the instruments that are the
content of this book. There is another question also often raised regarding the nature
of time: Could it be discrete? If so what would be the size of its smallest quantity,
the time quantum? Could it be that Planck’s time is the smallest time entity? This
is a totally unknown subject and appears to be a roadblock to in the development of
a sustainable quantum theory that includes the concepts elaborated in the theory of
general relativity.

Although we may feel somewhat uncomfortable in the context of such questions,
time remains the most basic concept in physics, is fundamental, and is the quantity
that is measured with the greatest precision. Current atomic clocks can commonly
keep time to an accuracy of 1 s in a million years, or in other words are stable to
better than 1 Ls in a year. For example, the timescale generated by the GPS satellites
for navigation, based on atomic frequency standards on satellites and on ground,
is stable after appropriate processing and filtering to about 1 ns/day. On the other
hand, on the basis of our inability to measure time by astronomical means with such
accuracy, it was decided in 1967 to replace the astronomical definition of the second
by one in terms of a particular atomic hyperfine transition in the Cs atom. The fre-
quency of that transition is set at 9,192,631,770 Hz. Furthermore, since now the speed
of light is defined exactly as 299,792,458 m/s, providing at the same time a definition
of the metre, the mechanical units of the SI become essentially determined by the
basic time unit, the second. The concept of unifying all ST units in terms of a single
quantity goes further due to the Josephson effect phenomenon, which relates voltage
to frequency in a most fundamental expression, 2e/#, involving only fundamental
constants. This is the subject that will be described in Chapter 3.

From this discussion, it is evident that time plays a most important role in physics
and technology and the realization of the highest accuracy and precision of the SI
unit, the second, has remained one of the most active preoccupations of several labo-
ratories and institutes over the past 50 years. Starting with tremendous improvements
in the realization of the second within the microwave range, work has extended to
the optical range with proven increase in frequency stability and accuracy by several
orders of magnitude. These achievements were possible mainly through a better
understanding of the interactions between electromagnetic radiation and atoms, pro-
viding a means of altering the properties of atoms. This book is about those improve-
ments that have taken place mainly during the past 25 years, on the realization of
stable and accurate frequency standards.
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