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Preface

Harmonic functions—the solutions of Laplace’s equation—play a
crucial role in many areas of mathematics, physics, and engineering.
But learning about them is not always easy. At times the authors have
agreed with Lord Kelvin and Peter Tait, who wrote ([18], Preface)

There can be but one opinion as to the beauty and utility of this
analysis of Laplace; but the manner in which it has been hitherto
presented has seemed repulsive to the ablest mathematicians, and
difficult to ordinary mathematical students.

The quotation has been included mostly for the sake of amusement,
but it does convey a sense of the difficulties the uninitiated sometimes
encounter.

The main purpose of our text, then, is to make learning about har-
monic functions easier. We start at the beginning of the subject, assum-
ing only that our readers have a good foundation in real and complex
analysis along with a knowledge of some basic results from functional
analysis. The first fifteen chapters of [15], for example, provide suffi-
cient preparation.

In several cases we simplify standard proofs. For example, we re-
place the usual tedious calculations showing that the Kelvin transform
of a harmonic function is harmonic with some straightforward obser-
vations that we believe are more revealing. Another example is our
proof of Bocher’s Theorem, which is more elementary than the classi-
cal proofs.

We also present material not usually covered in standard treatments
of harmonic functions (such as {9], {11], and {19]). The section on the
Schwarz Lemma and the chapter on Bergman spaces are examples. For
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X Preface

completeness, we include some topics in analysis that frequently slip
through the cracks in a beginning graduate student’s curriculum, such
as real-analytic functions.

We rarely attempt to trace the history of the ideas presented in this
book. Thus the absence of a reference does not imply originality on
our part.

For this second edition we have made several major changes. The
key improvement is a new and considerably simplified treatment of
spherical harmonics (Chapter 5). The book now includes a formula for
the Laplacian of the Kelvin transform (Proposition 4.6). Another ad-
dition is the proof that the Dirichlet problem for the half-space with
continuous boundary data is solvable (Theorem 7.11), with no growth
conditions required for the boundary function. Yet another signifi-
cant change is the inclusion of generalized versions of Liouville’s and
Bocher’s Theorems (Theorems 9.10 and 9.11), which are shown to be
equivalent. We have also added many exercises and made numerous
small improvements.

In addition to writing the text, the authors have developed a soft-
ware package to manipulate many of the expressions that arise in har-
monic function theory. Our software package, which uses many results
from this book, can perform symbolic calculations that would take a
prohibitive amount of time if done without a computer. For example,
the Poisson integral of any polynomial can be computed exactly. Ap-
pendix B explains how readers can obtain our software package free of
charge.

The roots of this book lie in a graduate course ‘at Michigan State
University taught by one of the authors and attended by the other au-
thors along with a number of graduate students. The topic of harmonic
functions was presented with the intention of moving on to different
material after introducing the basic concepts. We did not move on to
different material. Instead, we began to ask natural questions about
harmonic functions. Lively and illuminating discussions ensued. A
freewheeling approach to the course developed; answers to questions
someone had raised in class or in the hallway were worked out and then
presented in class (or in the hallway). Discovering mathematics in this
way was a thoroughly enjoyable experience. We will consider this book
a success if some of that enjoyment shines through in these pages.
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CHAPTER 1

Basic Properties of
Harmonic Functions

Definitions and Examples

Harmonic functions, for us, live on open subsets of real Euclidean
spaces. Throughout this book, n will denote a fixed positive integer
greater than 1 and Q will denote an open, nonempty subset of R". A
twice continuously differentiable, complex-valued function u defined
on Q is harmonic on Q if

where A = D1%+- - - +D,,? and D;? denotes the second partial derivative
with respect to the j® coordinate variable. The operator A is called the
Laplacian, and the equation Au = 0 is called Laplace’s equation. We
say that a function u defined on a (not necessarily open) set E C R" is
harmonic on E if u can be extended to a function harmonic on an open
set containing E.

We let x = (xj,...,Xn) denote a typical point in R" and let |x| =
(x1%2 + - - - + xn%)1/2 denote the Euclidean norm of x.

The simplest nonconstant harmonic functions are the coordinate
functions; for example, u(x) = x;. A slightly more complex example
is the function on R? defined by

u(x) = x12 + x2°% = 2x3% + ix>.

As we will see later, the function
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u(x) = x>

is vital to harmonic function theory when n > 2; the reader should
verify that this function is harmonic on R™ \ {0}.

We can obtain additional examples of harmonic functions by dif-
ferentiation, noting that for smooth functions the Laplacian commutes
with any partial derivative. In particular, differentiating the last exam-
ple with respect to x; shows that x;|x|~" is harmonic on R\ {0} when
n > 2. (We will soon prove that every harmonic function is infinitely
differentiable; thus every partial derivative of a harmonic function is
harmonic.)

The function x |x|~" is harmonic on R™\ {0} even when n = 2. This
can be verified directly or by noting that x; |x|~2 is a partial derivative
of log x|, a harmonic function on R? \ {0}. The function log | x| plays
the same role when n = 2 that |x|2~" plays when n > 2. Notice that
limy - log |x| = o, but limy_ |x|2~™ = 0; note also that log | x| is nei-
ther bounded above nor below, but |x|2~" is always positive. These
facts hint at the contrast between harmonic function theory in the
plane and in higher dimensions. Another key difference arises from
the close connection between holomorphic and harmonic functions in
the plane—a real-valued function on Q ¢ R? is harmonic if and only
if it is locally the real part of a holomorphic function. No comparable
result exists in higher dimensions.

Invariance Properties

Throughout this book, all functions are assumed to be complex
valued unless stated otherwise. For k a positive integer, let Ck(Q)
denote the set of k times continuously differentiable functions on Q;
C=(Q) is the set of functions that belong to C*(Q) for every k. For
E c R™, we let C(E) denote the set of continuous functions on E.

Because the Laplacian is linear on C?(Q), sums and scalar multiples
of harmonic functions are harmonic.

For y € R™ and u a function on Q, the y-translate of u is the func-
tion on Q + y whose value at x is u(x - y). Clearly, translations of
harmonic functions are harmonic.

For a positive number r and u a function on Q, the r-dilate of «,
denoted u,, is the function
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(ur)(x) = u(rx)

defined for x in (1/)Q = {(1/)w : w € Q}. If u € C3(Q), then a
simple computation shows that A(u,) = r?(Au), on (1/7)Q. Hence
dilates of harmonic functions are harmonic.

Note the formal similarity between the Laplacian A = D2+ - -+ Dy?
and the function |x|2 = x;2 + - - - + x,2, whose level sets are spheres
centered at the origin. The connection between harmonic functions and
spheres is central to harmonic function theory. The mean-value prop-
erty, which we discuss in the next section, best illustrates this connec-
tion. Another connection involves linear transformations on R” that
preserve the unit sphere; such transformations are called orthogonal.
A linear map T: R" — R" is orthogonal if and only if |Tx| = |x| for all
x € R™. Simple linear algebra shows that T is orthogonal if and only
if the column vectors of the matrix of T (with respect to the standard
basis of R") form an orthonormal set.

We now show that the Laplacian commutes with orthogonal trans-
formations; more precisely, if T is orthogonal and u € C2(Q), then

A(UoT)=(Au)oT

on T-1(Q). To prove this, let [t;x] denote the matrix of T relative to
the standard basis of R™. Then

n
Dm(uoT) = ) tjpm(Dju)oT,
j=1

where D,, denotes the partial derivative with respect to the mt coordi-
nate variable. Differentiating once more and summing over m yields

A(uoT)

i
f[\/]:
M=

timtjm(DxDju) o T

1 jk=1

>

1

tkmtjm)(DkDju) o T
1

?M:

L

n
= Z (Diju) oT
Jj=1

=(Au) o T,
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as desired. The function u o T is called a rotation of u. The preced-
ing calculation shows that rotations of harmonic functions are har-
monic.

The Mean-Value Property

Many basic properties of harmonic functions follow from Green's
identity (which we will need mainly in the special case when Q is a
ball):

1.1 JQ(uAv - vAu)dv = LQ(anv —vDhu)ds.

Here Q is a bounded open subset of R™ with smooth boundary, and
u and v are C2-functions on a neighborhood of Q, the closure of Q.
The measure V = V,, is Lebesgue volume measure on R", and s de-
notes surface-area measure on 9} (see Appendix A for a discussion of
integration over balls and spheres). The symbol D, denotes differen-
tiation with respect to the outward unit normal n. Thus for £ € 9Q,
(Dau)(T) = (Vu)(T) - n(L), where Vu = (Dyu,...,D,u) denotes the
gradient of u and - denotes the usual Euclidean inner product.

Green’s identity (1.1) follows easily from the familiar divergence the-
orem of advanced calculus:

1.2 I divde=J W - nds.
Q 3Q

Here w = (wy,..., wy) is a smooth vector field (a C*-valued function
whose components are continuously differentiable) on a neighborhood
of @, and divw, the divergence of w, is defined tobe D;wy +- - -+ Dy, wy,.
To obtain Green’s identity from the divergence theorem, simply let
w =uVv - vVu and compute.

The following useful form of Green's identity occurs when u is har-
monic and v = 1:

1.3 I Dpuds = 0.
30

Green’s identity is the key to the proof of the mean-value property.
Before stating the mean-value property, we introduce some notation:
B(a,r) = {x € R" : |[x — a] < r} is the open ball centered at a of
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radius 7; its closure is the closed ball B(a,r); the unit ball B(0,1) is
denoted by B and its closure by B. When the dimension is important we
write B, in place of B. The unit sphere, the boundary of B, is denoted
by §; normalized surface-area measure on S is denoted by o (so that
o (S) = 1). The measure o is the unique Borel probability measure on
S that is rotation invariant (meaning o (T(E)) = o (E) for every Borel
set E C S and every orthogonal transformation 7).

1.4 Mean-Value Property: If u is harmonic on B(a, ), then u equals
the average of u over 0B(a,r). More precisely,

u(a) = Lu(a +7rC)do(C).

PROOF: First assume that n > 2. Without loss of generality we may
assume that B(a,r) = B. Fix € € (0,1). Apply Green's identity (1.1)
withQ = {x e R":¢ < |x| < 1} and v(x) = |x|?2~" to obtain

0= (2—n)Luds—(2—n)£1’"fsuds

- J Dpuds - 52‘"J Dau ds.
S &S

By 1.3, the last two terms are 0, thus

J uds = e“"J uds,
S &S

which is the same as

L udo = Jsu(fg) do (7).

Letting ¢ — 0 and using the continuity of u at 0, we obtain the desired
result.

The proof when n = 2 is the same, except that |x|2~" should be
replaced by log | x|. ]

Harmonic functions also have a mean-value property with respect to
volume measure. The polar coordinates formula for integration on R"

is indispensable here. The formula states that for a Borel measurable,
integrable function f on R",
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1

1.5
V(B) Jr»

fav = j: pnei Lf(rlj) do () dr

(see [15], Chapter 8, Exercise 6). The constant nV(B) arises from the
normalization of o (choosing f to be the characteristic function of B
shows that nV (B) is the correct constant).

1.6 Mean-Value Property, Volume Version: If u is harmonic on

B(a,r), thenu(a) equals the average of u over B(a,r). More precisely,

1
= —— av.
uia) V(B(a,1)) Jear u

\

PROOF: We can assume that B(a,r) = B. Apply the polar coordi-
nates formula (1.5) with f equal to u times the characteristic function
of B, and then use the spherical mean-value property (Theorem 1.4). m

We will see later (1.24 and 1.25) that the mean-value property char-
acterizes harmonic functions.

We conclude this section with an application of the mean value prop-
erty. We have seen that a real-valued harmonic function may have an
isolated (nonremovable) singularity; for example, |x|2~" has an isolated
singularity at O if n > 2. However, a real-valued harmonic function u
cannot have isolated zeros.

1.7 Corollary: The zeros of a real-valued harmonic function are
never isolated. .

PROOF: Suppose u is harmonic and real valued on Q, a € Q, and
u(a) = 0. Letr > 0 be such that B(a,r) c Q. Because the average of u
over 0B(a,r) equals 0, either u is identically 0 on 3B(a,7) or u takes
on both positive and negative values on 2B(a, r). In the later case, the
connectedness of dB(a,r) implies that u has a zero on dB(a, r).

Thus u has a zero on the boundary of every sufficiently small ball
centered at a, proving that a is not an isolated zero of wu. [

The hypothesis that u is real valued is needed in the preceding corol-
lary. This is no surprise when n = 2, because nonconstant holomorphic
functions have isolated zeros. When » > 2, the harmonic function



