Parallel and Distributed
Computing Handbook

Albert Y. Zomaya, Editor

| | 5 (4)

McGraw-Hill

New York San Francisco Washington, D.C. Auckland Bogota
Caracas Lisbon London Madrid Mexico City Milan
Montreal New Delhi San Juan Singapore

Sydney Tokyo Toronto

o
Pl
<A

'

32

“~Cgdnstructing Numerical
Software Libraries for High-
Performance Computer
Environments

Jack J. Dongarra and David W. Wélker

This chapter discusses the design of linear algebra libraries for high-performance comput-
ers. Particular emphasis is placed on the development of scalable algorithms for MIMD
distributed memory concurrent computers. A brief description of the EISPACK, LIN-
PACK, and LAPACK libraries is given, followed by an outline of ScaLAPACK, which is a
distributed memory version of LAPACK currently under development. The importance of
block-partitioned algorithms in reducing the frequency of data movement between various
levels of hierarchical memory is stressed. The use of such algorithms helps reduce the
message start-up costs on distributed memory concurrent computers. Other key ideas in
our approach are:

1. the use of distributed versions of the Level 3 Basic Linear Algebra Subprograms
(BLAS) as computational building blocks

2. the use of Basic Linear Algebra Communication Subprograms (BLACS) as commu-
nication building blocks

Together, the distributed BLAS and the BLACS can be used to construct higher-level al-

N gorithms and to hide many details of the parallelism from the application developer. The

¥ block-cyclic data distribution is described and is adopted as a good way of distributing

block partitioned matrices. Block-partitioned versions of the Cholesky and LU factoriza-

tions are presented, and optimization issues associated with the implementation of the LU

factorization algorithm on distributed memory concurrent computers are discussed, to-

gether with its performance on the Intel Delta system. Finally, approaches to the design of
library interfaces are reviewed.

32.1 Introduction

The increasing availability of advanced-architecture computers is having a very signifi-
cant effect on all spheres of scientific computation, including algorithm research and soft-

917

—— ¢ ————— —

918 Parallel and Distributed Computing

ware development in numerical linear algebra. Linear algebra—in particular, the solution
of linear systems of equations—Tlies at the heart of most calculations in scientific comput-
ing. This chapter discusses some of the recent developments in linear algebra designed to
exploit these advanced-architecture computets. Particular attention will be paid to dense
factorization routines such as the Cholesky and LU factorizations. These will be used as
examples to highlight the most important factors that must be considered in designing lin-
ear algebra software for advanced-architecture computers. We use these factorization rou-
tines for illustrative purposes not only because they are relatively simple, but also because
of their importance in several scientific and engineering applications that make use of
boundary element methods. These applications include electromagnetic scattering and
computational fluid dynamics problems, as discussed in more detail in Section 32.4.1.

Much of the work in developing linear algebra software for advanced-architecture com-
puters is motivated by the need to solve large problems on the fastest computers available.
In this chapter, we focus on four basic issues:

1. the motivation for the work

2. the development of standards for use in linear algebra and the building blocks for a
library

aspects of algorithm design and parallel implementation

4. future directions for research

W)

For the past 15 years or so, there has been a great deal of activity in the area of algo-
rithms and software for solving linear algebra problems. The linear algebra community
has long recognized the need for help in developing algorithms into software libraries, and
several years ago, as a community effort, put together a de facto standard for identifying
basic operations required in linear algebra algorithms and software. The hope was that the
routines making up this standard, known collectively as the Basic Linear Algebra Subpro-
grams (BLAS), would be efficiently implemented on advanced-architecture computers by
many manufacturers, making it possible to reap the portability benefits of having them ef-
ficiently implemented on a wide range of machines. This goal has been largely realized.

The key insight of our approach to designing linear algebra algorithms for advanced ar-
chitecture computers is that the frequency with which data are moved between different
levels of the memory hierarchy must be minimized in order to attain high performance.
Thus, our main algorithmic approach for exploiting both vectorization and parallelism in
our implementations is the use of block-partitioned algorithms, particularly in conjunction
with highly-tuned kernels for performing matrix-vector and matrix-matrix operations (the
Level 2 and 3 BLAS). In general, the use of block-partitioned algorithms requires data to
be moved as blocks, rather than as vectors or scalars, so that although the total amount of
data moved is unchanged, the latency (or startup cost) associated with the moment is
greatly reduced because fewer messages are needed to move the data.

A second key idea is that the performance of an algorithm can be tuned by a user by
varying the parameters that specify the data layout. On shared memory machines, this is
controlled by the block size, while on distributed memory machines it is controlled by the
block size and the configuration of the logical process mesh, as described in more detail in
Section 32.5.

Section 32.1 gives an overview of some of the major software projects aimed at solving
dense linear algebra problems. It then describes the types of machines that benefit most
from the use of block-partitioned algorithms, and discusses what is meant by high-quality,
reusable software for advanced-architecture computers. Section 32.2 discusses the role of

«-..:s'g’:;\&

Constructing Numerical Software Libraries 919

the BLAS in portability and performance on high-performance computers. The design of
these building blocks, and their use in block-partitioned algorithms, are covered in Section
32.3. Section 32.4 focuses on the design of a block-partitioned algorithm for LU factoriza-
tion, and Sections 32.5, 32.6, and 32.7 use this example to illustrate the most important
factors in implementing dense linear algebra routines on MIMD distributed memory con-
current computers. Section 32.5 deals with the issue of mapping the data onto the hierar-
chical memory of a concurrent computer. The layout of an application’s data is crucial in
determining the performance and scalability of the parallel code. In Sections 32.6 and
32.7, details of the parallel implementation and optimization issues are discussed. Section
32.8 presents some future directions for investigation.

32.1.1 Dense linear algebra libraries

Over the past 25 years, the first author has been directly involved in the development of
several important packages of dense linear algebra software: EISPACK, LINPACK,
LAPACK, and the BLAS. In addition, both authors are currently involved in the develop-
ment of ScaLAPACK, a scalable version of LAPACK for distributed memory concurrent
computers. In this section, we give a brief review of these packages—their history, their
advantages, and their limitations on high-performance computers.

32.1.1.1 EISPACK. EISPACK is a collection of Fortran subroutines that compute the
eigenvalues and eigenvectors of nine classes of matrices: complex general, complex Her-
mitian, real general, real symmetric, real symmetric banded, real symmetric tridiagonal,
special real tridiagonal, generalized real, and generalized real symmetric matrices. In addi-
tion, two routines are included that use singular value decomposition to solve certain least-
squares problems.

EISPACK is primarily based on a collection of Algol procedures developed in the 1960s
and collected by J. H. Wilkinson and C. Reinsch in a volume entitled in the Handbook for
Automatic Computation [57] series. This volume was not designed to cover every possible
method of solution; rather, algorithms were chosen on the basis of their generality, ele-
gance, accuracy, speed, or economy of storage.

Since the release of EISPACK in 1972, over ten thousand copies of the collection have
been distributed worldwide.

32.1.1.2 LINPACK. LINPACK is a collection of Fortran subroutines that analyze and solve
linear equations and linear least-squares problems. The package solves linear systems
whose matrices are general, banded, symmetric indefinite, symmetric positive definite, tri-
angular, and tridiagonal square. In addition, the package computes the QR and singular
value decompositions of rectangular matrices and applies them to least-squares problems.

LINPACK is organized around four matrix factorizations: LU factorization, pivoted
Cholesky factorization, QR factorization, and singular value decomposition. The term LU
Sactorization is used here in a very general sense to mean the factorization of a square ma-
trix into a lower triangular part and an upper triangular part, perhaps with pivoting. These
factorizations will be treated at greater length later, when the actual LINPACK subroutines
are discussed. But first a digression on organization and factors influencing LINPACK’s
efficiency is necessary.

LINPACK uses column-oriented algorithms to increase efficiency by preserving locality
of reference. This means that if a program references an item in a particular block, the next

920 Parallel and Distributed Computing

reference is likely to be in the same block. By column orientation we mean that the LIN-
PACK codes always reference arrays down columns, not across rows. This works because
Fortran stores arrays in column major order. Thus, as one proceeds down a column of an
array, the memory references proceed sequentially in memory. On the other hand, as one
proceeds across a row, the memory references jump across memory, the length of the jump
being proportional to the length of a column. The effects of column orientation are quite
dramatic: on systems with virtual or cache memories, the LINPACK codes will signifi-
cantly outperform codes that are not column oriented. We note, however, that textbook ex-
amples of matrix algorithms are seldom column oriented.

Another important factor influencing the efficiency of LINPACK is the use of the Level
1 BLAS; there are three effects.

First, the overhead entailed in calling the BLAS reduces the efficiency of the code. This
reduction is negligible for large matrices, but it can be quite significant for small matrices.
The matrix size at which it becomes unimportant varies from system to system; for square
matrices it is typically between n =25 and n = 100. If this seems like an unacceptably large
overhead, remember that on many modern systems the solution of a system of order 25 or
less is itself a negligible calculation. Nonetheless, it cannot be denied that a person whose
programs depend critically on solving small matrix problems in inner loops will be better
off with BLAS-less versions of the LINPACK codes. Fortunately, the BLAS can be re-
moved from the smaller, more frequently used program in a short editing session.

Second, the BLAS improve the efficiency of programs when they are run on nonop-
tomizing compilers. This is because doubly subscripted array references in the inner loop
of the algorithm are replaced by singly subscripted array references in the appropriate
BLAS. The effect can be seen for matrices of quite small order, and for large orders the
savings are quite significant.

Finally, improved efficiency can be achieved by coding a set of BLAS [17] to take ad-
vantage of the special features of the computers on which LINPACK is being run. For
most computers, this simply means producing machine-language versions. However, the
code can also take advantage of more exotic architectural features, such as vector opera-
tions. Further details about the BLAS are presented in Section 32.2.

32.1.1.3 LAPACK. LAPACK [14] provides routines for solving systems of simultaneous
linear equations, least-squares solutions of linear systems of equations, eigenvalue prob-
lems, and singular value problems. The associated matrix factorizations (LU, Cholesky,
QR, SVD, Schur, generalized Schur) are also provided, as are related computations such as
reordering the Schur factorizations and estimating condition numbers. Dense and banded
matrices are handled, but not general sparse matrices. In all areas, similar functionality is
provided for real and complex matrices, in both single and double precision.

The original goal of the LAPACK project was to make the widely used EISPACK and
LINPACK libraries run efficiently on shared-memory vector and parallel processors. On
these machines, LINPACK and EISPACK are inefficient because their memory access pat-
terns disregard the multilayered memory hierarchies of the machines, thereby spending
too much time moving data instead of doing useful floating-point operations. LAPACK
addresses this problem by reorganizing the algorithms to use block matrix operations, such
as matrix multiplication, in the innermost loops [3, 14]. These block operations can be op-
timized for each architecture to account for the memory hierarchy [2], and so provide a
transportable way to achieve high efficiency on diverse modern machines. Here we use the
term transportable instead of portable because, for fastest possible performance,

o

Constructing Numerical Software Libraries 921

LAPACK requires that highly optimized block matrix operations be already implemented
on each machine. In other words, the correctness of the code is portable, but high perfor-
mance is not—if we limit ourselves to a single Fortran source code.

LAPACK can be regarded as a successor to LINPACK and EISPACK. It has virtually all
the capabilities of these two packages and much more. LAPACK improves on LINPACK
and EISPACK in four main respects: speed, accuracy, robustness and functionality. While
LINPACK and EISPACK are based on the vector operation kernels of the Level 1 BLAS,
LAPACK was designed at the outset to exploit the Level 3 BLAS—a set of specifications
for Fortran subprograms that do various types of matrix multiplication and the solution of
triangular systems with multiple right-hand sides. Because of the course granularity of the
Level 3 BLAS operations, their use tends to promote high efficiency on many high-perfor-
mance computers, particularly if specially coded implementations are provided by the
manufacturer.

32.1.1.4 ScalLAPACK. The ScaLAPACK software library, scheduled for completion by the
end of 1994, will extend the LAPACK library to run scalably on MIMD distributed mem-
ory concurrent computers [10, 11]. For such machines the memory hierarchy includes the
off-processor memory of other processors, in addition to the hierarchy of registers, cache,
and local memory on each processor. Like LAPACK, the ScaLAPACK routines are based
on block-partitioned algorithms in order to minimize the frequency of data movement
among various levels of the memory hierarchy. The fundamental building blocks of the
ScaLAPACK library are distributed memory versions of the Level 2 and Level 3 BLAS,
and a set of Basic Linear Algebra Communication Subprograms (BLACS) [16, 26] for
communication tasks that arise frequently in parallel linear algebra computations. In the
ScaLAPACK routines, all interprocessor communication occurs within the distributed
BLAS and the BLACS, so the source code of the top software layer of ScaLAPACK looks
very similar to that of LAPACK.

We envisage a number of user interfaces to ScaLAPACK. Initially, the interface will be
similar to that of LAPACK, with some additional arguments passed to each routine to
specify the data layout. Once this is in place, we intend to modify the interface so the argu-
ments to each ScaLAPACK routine are the same as in LAPACK. This will require infor-
mation about the data distribution of each matrix and vector to be hidden from the user.
This may be done by means of a ScaLAPACK initialization routine. This interface will be
fully compatible with LAPACK. Provided “dummy” versions of the ScaLAPACK initial-
ization routine and the BLACS are added to LAPACK, there will be no distinction be-
tween LAPACK and ScaLAPACK at the application level, though each will link to various
versions of the BLAS and BLACS. Following this, we will experiment with object-based
interfaces for LAPACK and ScaLAPACK, with the goal of developing interfaces compati-
ble with Fortran 90 [10] and C++ [24].

32.1.2 Target architecture

The EISPACK and LINPACK software libraries were designed for supercomputers used
in the 1970s and early 1980s, such as the CDC-7600, Cyber 205, and Cray-1. These
machines featured multiple functional units pipelined for good performance [43]. The
CDC-7600 was basically a high-performance scalar computer, while the Cyber 205 and
Cray-1 were early vector computers.

The development of LAPACK in the late 1980s was intended to make the EISPACK and
LINPACK libraries run efficiently on shared memory vector supercomputers. The ScaL A-

922 Parallel and Distributed Computing

PACK software library will extend the use of LAPACK to distributed memory concurrent
supercomputers. The development of ScaLAPACK began in 1991 and was scheduled to be
completed by the end of 1994.

The underlying concept of both the LAPACK and ScalLAPACK libraries is the use of
block partitioned algorithms to minimize data movement between various levels in hierar-
chical memory. Thus, the ideas discussed in this chapter for developing a library for dense
linear algebra computations are applicable to any computer with a hierarchical memory
that (1) imposes a sufficiently large start-up cost on the movement of data among various
levels in the hierarchy, and for which (2) the cost of a context switch is too great to make
fine grain size multithreading worthwhile. Our target machines are, therefore, medium and
large grain size advanced-architecture computers. These include “traditional” shared
memory vector supercomputers, such as the Cray Y-MP and C90, and MIMD distributed
memory concurrent supercomputers, such as the Intel Paragon and Thinking Machines’
CM-5, and the more recently announced IBM SP1 and Cray T3D concurrent systems.
Since these machines have only very recently become available, most of the ongoing de-
velopment of the ScaLAPACK library is being done on a 128-node Intel iPSC/860 hyper-
cube and on the 520-node Intel Delta system.

The Intel Paragon supercomputer can have up to 2000 nodes, each consisting of an i860
processor and a communications processor. The nodes each have at least 16 MB of mem-
ory, and are connected by a high-speed network with the topology of a two-dimensional
mesh. The CM-5 from Thinking Machines Corporation [53] supports both SIMD and
MIMD programming models, and may have up to 16k processors, though the largest CM-
5 currently installed has 1024 processors. Each CM-5 node is a Sparc processor and up to
4 associated vector processors. Point-to-point communication between nodes is supported
by a data network with the topology of a “fat tree” [46]. Global communication opera-
tions, such as synchronization and reduction, are supported by a separate control network.
The IBM SP1 system is based on the same RISC chip used in the IBM RS/6000 worksta-
tions and uses a multistage switch to connect processors. The Cray T3D uses the Alpha
chip from Digital Equipment Corporation, and connects the processors in a three-dimen-
sional torus.

Future advances in compiler and hardware technologies in the mid to late 1990s are ex-
pected to make multithreading a viable approach for masking communication costs. Since
the blocks in a block-partitioned algorithm can be regarded as separate threads, our ap-
proach will still be applicable on machines that exploit medium and coarse grain size mul-
tithreading.

32.1.3 High-quality, reusable, mathematical software

In developing a library of high-quality subroutines for dense linear algebra computations
the design goals fall into three broad classes:

» performance
® ease-of-use
® range-of-use

32.1.3.1 Performance. Two important performance metrics are concurrent efficiency and
scalability. We seek good performance characteristics in our algorithms by eliminating, as
much as possible, overhead that is due to load imbalance, data movement, and algorithm
restructuring. The way the data are distributed (or decomposed) over the memory hierar-

. P
e

Constructing Numerical Software Libraries 923

chy of a computer is of fundamental importance to these factors. Concurrent efficiency, €,
defined as the concurrent speedup per processor [32], where the concurrent speedup is the
execution time, T, for the best sequential algorithm running on one processor of the
concurrent computer, divided by the execution time, 7, of the parallel algorithm running on
N, processors. When direct methods are used, as in LU factorization, the concurrent effi-
ciency depends on the problem size and the number of processors, so on a given parallel
computer and for a fixed number of processors, the running time should not vary greatly
for problems of the same size. Thus, we may write

NNy = Ly tsegD 32.1
eWN) = F XN TNy (2.1
14 p p

where N represents the problem size. In dense linear algebra computations, the execution
time is usually dominated by the floating-point operation count, so the concurrent effi-
ciency is related to performance, G, measured in floating-point operations per second by

N
G (N, N,) = - 2 x e (N, N) (32.2)

calc

where 1., is the time for one floating-point operation. For iterative routines, such as
eigensolvers, the number of iterations, and hence the execution time, depends not only on
the problem size, but also on other characteristics of the input data, such as condition
number. A parallel algorithm is said to be scalable [37] if the concurrent efficiency
depends on the problem size and number of processors only through their ratio. This ratio
is simply the problem size per processor, often referred to as the granularity. Thus, for a
scalable algorithm, the concurrent efficiency is constant as the number of processors
increases while keeping the granularity fixed. Alternatively, Eq. 32.2 shows that this is
equivalent to saying that, for a scalable algorithm, the performance depends linearly on
the number of processors for fixed granularity.

32.1.3.2 Ease-of-use. Ease-of-use is concerned with factors such as portability and the
user interface to the library. Portability, in its most inclusive sense, means that the code is
written in a standard language, such as Fortran, and that the source code can be compiled
on an arbitrary machine to produce a program that will run correctly. We call this the
“mail-order software” model of portability, since it reflects the model used by software
servers such as netlib [20]. This notion of portability is quite demanding. It requires that
all relevant properties of the computer’s arithmetic and architecture be discovered at run
time within the confines of a Fortran code. For example, if it is important to know the over-
flow threshold for scaling purposes, it must be determined at run time without overflowing,
since overflow is generally fatal. Such demands have resulted in quite large and sophisti-
cated programs [28, 44] that must be modified frequently to deal with new architectures
and software releases. This “mail-order” notion of software portability also means that
codes generally must be written for the worst possible machine expected to be used,
thereby often degrading performance on all others. Ease-of-use is also enhanced if imple-
mentation details are largely hidden from the user, for example, through the use of an
object-based interface to the library [24].

924 Parallel and Distributed Computing

32.1.3.3 Range-of-use. Range-of-use may be gauged by how numerically stable the algo-
rithms are over a range of input problems, and the range of data structures the library will
support. For example, LINPACK and EISPACK deal with dense matrices stored in a rect-
angular array, packed matrices where only the upper or lower half of a symmetric matrix is
stored, and banded matrices where only the nonzero bands are stored. In addition, some
special formats such as Householder vectors are used internally to represent orthogonal
matrices. There are also sparse matrices, which may be stored in many different ways; but
in this chapter we focus on dense and banded matrices, the mathematical types addressed
by LINPACK, EISPACK, and LAPACK.

32.2 The BLAS as the Key to Portability

At least three factors affect the performance of portable Fortran code.

1. Vectorization. Designing vectorizable algorithms in linear algebra is usually straight-
forward. Indeed, for many computations there are several variants, all vectorizable,
but with varied characteristics in performance. (See, for example, [15].) Linear alge-
bra algorithms can approach the peak performance of many machines—principally
because peak performance depends on some form of chaining of vector addition and
multiplication operations, and this is just what the algorithms require. However,
when the algorithms are realized in straightforward Fortran 77 code, the performance
may fall well short of the expected level, usually because vectorizing Fortran compil-
ers fail to minimize the number of memory references—that is, the number of vector
load and store operations.

2. Data movement. What often limits the actual performance of a vector or scalar float-
ing-point unit is the rate of transfer of data between various levels of memory in the
machine. Examples include the transfer of vector operands in and out of vector regis-
ters, the transfer of scalar operands in and out of a high-speed scalar processor, the
movements of data between main memory and a high-speed cache or local memory,
paging between actual memory and disk storage in a virtual memory system, and
interprocessor communication on a distributed memory concurrent computer.

3. Parallelism. The nested loop structure of most linear algebra algorithms offers con-
siderable scope for loop-based parallelism. This is the principal type of parallelism
that LAPACK and ScaLAPACK presently aim to exploit. On shared memory concur-
rent computers, this type of parallelism can sometimes be generated automatically by
a compiler, but often requires the insertion of compiler directives. On distributed
memory concurrent computers, data must be moved between processors. This is usu-
ally done by explicit calls to message passing routines, although parallel language
extensions such as Coherent Parallel C [31] and Split-C [13] do the message passing
implicitly.

The question arises, “How can we achieve sufficient control over these three factors to
obtain the levels of performance that machines can offer?” The answer is through use of
the BLAS.

There are now three levels of BLAS:

Level 1 BLAS [45]: for vector operations, such as y - ox +y
Level 2 BLAS [18]: for matrix-vector operations, such as y < odx + By
Level 3 BLAS [17]: for matrix-matrix «<operations, such as C « a4B + BC.

Constructing Numerical Software Libraries 925

Here, 4, B and C are matrices, x and y are vectors, and o and P are scalars.

The Level 1 BLAS are used in LAPACK, but for convenience rather than for perfor-
mance. They perform an insignificant fraction of the computation, and they cannot achieve
high efficiency on most modern supercomputers.

The Level 2 BLAS can achieve near-peak performance on many vector processors, such
as a single processor of a CRAY X-MP or Y-MP, or Convex C-2 machine. However, on
other vector processors such as a CRAY-2 or an IBM 3090 VF, the performance of the
Level 2 BLAS is limited by the rate of data movement among various levels of memory.

The Level 3 BLAS overcome this limitation. This third level of BLAS performs O(n3)
floating point operations on 0(n2) data, whereas the Level 2 BLAS perform only O(nz)
operations on O(nz) data. The Level 3 BLAS also allow us to exploit parallelism in a way
that is transparent to the software that calls them. While the Level 2 BLAS offer some
scope for exploiting parallelism, greater scope is provided by the Level 3 BLAS, as Table
32.1 illustrates.

TABLE 32.1 Speed (Megafiops) of Level 2 and
Level 3 BLAS Operations on a Cray Y-MP. (All
matrices are of order 500; U is upper triangular.)

Number of processors: 1 2 4 8
Level 2: y ¢ odx + By 311 611 1197 2285
Level 3: C ¢— 04B + BC 312 623 1247 2425
Level 2: x ¢~ Ux 293 544 898 1613
Level 3: B < UB 310 374 479 584
Level 2: x ¢ Ulx 272 374 479 584
Level 3: B¢ U'B 309 618 1235 2398

32.3 Block Algorithms and Their Derivation

It is comparatively straightforward to recode many of the algorithms in LINPACK and
EISPACK so that they call Level 2 BLAS. Indeed, in the simplest cases the same floating-
point operations are done, possibly even in the same order. It is just a matter of reorganiz-
ing the software. To illustrate this point, we consider the Cholesky factorization algorithm
used in the LINPACK routine SPOFA, which factorizes a symmetric positive definite
matrix as A = UTU, We consider Cholesky factorization because the algorithm is simple,
and no pivoting is required. In Section 32.4 we shall consider the slightly more compli-
cated example of LU factorization.

Suppose that after j—1 steps the block A,, in the upper lefthand corner of 4 has been
factored as 4, = U7, U,,,. The next row and column of the factorization can then be com-
puted by writing 4 = UTU as

Aoo bj AOZ Utz;o 0 0 Uoo vj U02
T — T T
a; < vi uy 0110 uyw

A22 UT w. UT 00 U22

926 Parallel and Distributed Computing

where b, ¢;, v;, and wj are column vectors of length j—1, and a;; and uj; are scalars. Equat-

ing coefficients of the j’h column, we obtain

lfT

bj = Uy
a, = vTv +u2
1/ S R /)

Since U,, has already been computed, we can compute v; and u;; from the equations

Ul v,

001=bj
u2—a VTV
77 | N B

The body of the code of the LINPACK routine SPOFA that implements the above
method is shown in Fig. 32.1. The same computation recoded in “LAPACK-style” to use
the Level 2 BLAS routine STRSV (which solves a triangular system of equations) is
shown in Fig. 32.2. The call to STRSV has replaced the loop over K that made several
calls to the Level 1 BLAS routine SDOT. (For reasons given below, this is not the actual
code used in LAPACK—hence the term “LAPACK-style”)

This change by itself is sufficient to result in large gains in performance on a number of
machines—for example, from 72 to 251 megaflops for a matrix of order 500 on one pro-
cessor of a CRAY Y-MP. Since this is 81 percent of the peak speed of matrix-matrix multi-
plication on this processor, we cannot hope to do very much better by using Level 3

BLAS.

n-1
info = j + 1
s = 0.0e0
jmt = j

do j = 0,

if (jmi .ge. 1) then
dok =0, jmi -1
t = a(k,j) - sdot(k,a(0,k)
t = t/a(k,k)
a(k,j) =t
s + txt

s
end do

end if

s = a(j,j) - s

if (s .le. 0.0e0) go to 40

2(j,j) = sqrt(s)

end do

,1,2€0,3),1)

Figure 32.1 Body of the LINPACK routing SPOFA for Cholesky factorization

Constructing Numerical Software Libraries 927

do j=0,n-1

call strsv(’upper’, ’transpose’, ’‘mon-unit’, j, a, lda,
a(0,j), 1)

s = a(j,j) - sdot(j, a(0,j), 1, a(0,j), 1)

if (s .le. =zero) go to 20

a(j,j) = sqrt(s)
end do

Figure 32.2 Body of the “LINPACK-style” routing SPOFA for Cholesky factorization

We can, however, restructure the algorithm at a deeper level to exploit the faster speed
of the Level 3 BLAS. This restructuring involves recasting the algorithm as a block algo-
rithm—that is, an algorithm that operates on blocks or submatrices of the original matrix.

32.3.1 Deriving a block algorithm

To derive a block form of Cholesky factorization, we partition the matrices as shown in
Fig. 32.3, in which the diagonal blocks of 4 and U are square, but of differing sizes. We
assume that the first block has already been factored as 4, = Ugo Uy, and that we now
want to determine the second block column of U consisting of the blocks Uy, and Uy;.
Equating submatrices in the second block of columns, we obtain

U u

ot = Yoo%01

4 = U§1U01 = UTU

11711

A

Hence, since Uy, has already been computed, we can compute Uy, as the solution to
the equation

ooYo1 = ‘o
AOO AOl AOZ UT‘O o o UOO U01 Uoz
AII A11 sz = U:l UL o " 0 U11 U12
T T
A;Z AIZ AZZ U;Z U12 U22 0 0 Uﬂ

Figure 32.3 Partitioning of A, UT, and U into blocks. It is assumed that the first block has already been fac-
tored as Ay, = Uyo Uy, and we want to determine the block column consisting of Up; and U ;. Note that
the diagonal blocks of A and U are square matrices.

928 Parallel and Distributed Computing

by a call to the Level 3 BLAS routine STRSM; and then we can compute U from

T T
UpUy =4-Us Uy,

This involves first updating the symmetric submatrix 4;; by a call to the Level 3 BLAS
routine SSYRK, and then computing its Cholesky factorization. Since Fortran does not al-
low recursion, a separate routine must be called (using Level 2 BLAS rather than Level 3),
named SPOTF2 in Fig. 32.4. In this way, successive blocks of columns of U are computed.
The LAPACK-style code for the block algorithm is shown in Fig. 32.4. This code runs at
49 megaflops on an IBM 3090, more than double the speed of the LINPACK code. On a
CRAY Y-MP, the use of Level 3 BLAS squeezes a little more performance out of one pro-
cessor, but makes a large improvement when using all eight processors.

But that is not the end of the story, and the code given above is not the code actually
used in the LAPACK routine SPOTRF. We mentioned earlier that for many linear algebra
computations there are several algorithmic variants, often referred to as i-, j-, and k-vari-
ants, according to a convention introduced in [15] and used in [36]. The same is true of the
corresponding block algorithms.

It turns out that the j-variant chosen for LINPACK, and used in the above examples, is
not the fastest on many machines, because it performs most of the work in solving triangu-
lar systems of equations, which can be significantly slower than matrix-matrix multiplica-
tion. The variant actually used in LAPACK is the i-variant, which relies on matrix-matrix
multiplication for most of the work. Table 32.2 summarizes the results.

TABLE 32.2 Speed (Megaflops) of Cholesky Factorization A = UV for n = 500

IBM 3090 VF, 1 processor Cray Y-MP, 1 processor Cray Y-MP, 8 processors

J-variant: LINPACK 23 72 72
J-variant: using level 2 BLAS 24 251 378
J-variant: using level 3BLAS 49 287 1225
i-variant: using level 3BLAS 50 290 1414
do j = 0, n-1, nb
jb = min(nb, n-j)
call strsm(’‘left’, ’upper’, ’'transpose’, ’non-unit’, j, jb,
one,

a, lda, a(0,j), lda)
call ssyrk(’upper’, 'transpose’, jb, j, -one, a(0,j), lda,
one,
a(j,j), lda)
call spotf2(’upper’, jb, a(j,j), lda, info)
if(info .ne. 0) go to 20
end do

Figure 32.4 The body of the “LAPACK-style” routine SPOFA for block Cholesky factorization. In this
code segment, nb denotes the width of the blocks.

- e e o mr —— e et m e — -— T———— e e T

Constructing Numerical Software Libraries 929

32.3.2 Examples of block algorithms in LAPACK

Having discussed in detail the derivation of one particular block algorithm, we now
describe examples of the performance achieved with two well known block algorithms:
LU and Cholesky factorizations. No extra floating-point operations nor extra working
storage is required for either of these simple block algorithms. (See Gallivan et al. [33]
and Dongarra et al. [19] for surveys of algorithms for dense linear algebra on high-perfor-
mance computers.)

Table 32.3 illustrates the speed of the LAPACK routine for LU factorization of a real
matrix, SGETREF in single precision on CRAY machines, and DGETRF in double preci-
sion on all other machines. Thus, 64-bit floating-point arithmetic is used on all machines
tested. A block size of 1 means that the unblocked algorithm is used, since it is faster
than—or at least as fast as—a block algorithm.

TABLE 32.3 Speed (Megaflops) of SGETRF/DGETRF for Square Matrices of Order n

Values of n
No. of Block

Machine processors size 100 200 300 400 500
IBM RISC/6000-530 1 32 19 25 29 31 33
Alliant FX/8 8 16 9 26 32 46 57
IBM 3090 VF 1 64 23 4 52 58 63
Convex C-240 4 64 31 60 82 100 112
Cray Y-MP 1 1 132 219 254 272 283
Cray-2 1 64 110 211 292 318 358
Siemens/Fujitsu VP 400-EX 1 64 46 132 222 309 397
NEC SX2 1 1 118 274 412 504 577
Cray Y-MP 8 64 195 556 920 1188 1408

LAPACK is designed to give high efficiency on vector processors, high-performance
“superscalar” workstations, and shared memory multiprocessors. LAPACK in its present
form is less likely to give good performance on other types of parallel architectures (for
example, massively parallel SIMD machines or MIMD distributed memory machines),
but the ScalLAPACK project, described in Section 32.1.1.4, is intended to adapt LAPACK
to these new architectures. LAPACK can also be used satisfactorily on all types of scalar
machines (PCs, workstations, mainframes). Table 32.4 gives similar results for Cholesky
factorization, extending the results given in Table 32.2.

TABLE 32.4 Speed (Megaflops) of SPOTRF/DPOTRF for Matrices of Order n. Here,
UPLO = “U,” so the factorization is of the form A = UTU.

Values of n
No. of Block

Machine processors size 100 200 300 400 500
IBM RISC/6000-530 Tl 32 21 29 34 36 38
Alliant FX/8 8 16 10 27 40 49 52
[BM 3090] VF 1 48 26 43 56 62 67
Convex C-240 4 64 32 63 82 96 103
Cray Y-MP 1 1 126 219 257 275 285
Cray-2 1 64 109 213 294 318 362
Siemens/Fujitsu VP 400-EX 1 64 53 145 237 312 369
NEC $X2 1 1 155 387 589 719 819
Cray Y-MP 8 32 146 479 845 1164 1393

S-— = ropesaniy

LAPACK, like LINPACK, provides LU and Cholesky factorizations of band matrices.
The LINPACK, algorithms can easily be restructured to use Level 2 BLAS, though re-
structuring has little effect on performance for matrices of very narrow bandwidth. It is
also possible to use Level 3 BLAS, at the price of doing some extra work with zero ele-
ments outside the band [22]. This process becomes worthwhile for large matrices and
semi-bandwidth greater than 100 or so.

32.4 LU Factorization

In this section, we first discuss the uses of dense LU factorization in several fields. We
next develop a block-partitioned version of the k, or right-looking, variant of the LU fac-
torization algorithm. In subsequent sections, the parallelization of this algorithm is
described in detail in order to highlight the issues and considerations that must be taken
into account in developing an efficient, scalable, and transportable dense linear algebra
library for MIMD distributed memory concurrent computers.

32.4.1 Uses of LU factorization in science and engineering

A major source of large dense linear systems is that of problems involving the solution of
boundary integral equations. These are integral equations defined on the boundary of a
region of interest. All examples of practical interest compute some intermediate quantity
on a two-dimensional boundary and then use this information to compute the final desired
quantity in three-dimensional space. The price one pays for replacing three dimensions
with two is that what started as a sparse problem in 0(n3) variables is replaced by a dense
problem in O(nz).
Dense systems of linear equations are found in numerous applications, including:

®= airplane wing design

® radar cross-section studies

® flow around ships and other off-shore constructions
® diffusion of solid bodies in a liquid

® noise reduction

* diffusion of light through small particles

The electromagnetics community is a major user of dense linear systems solvers. Of
particular interest to this community is the solution of the so-called radar cross-section
problem. In this problem, a signal of fixed frequency bounces off an object. The goal is to
determine the intensity of the reflected signal in all possible directions. The underlying dif-
ferential equation may vary, depending on the specific problem. In the design of stealth
aircraft, the principal equation is the Helmholtz equation. To solve this equation, research-
ers use the method of moments [38, 56). In the case of fluid flow, the problem often in-
volves solving the Laplace or Poisson equation. Here, the boundary integral solution is
known as the panel method [40, 41], so named from the quadrilaterals that discretize and
approximate a structure such as an airplane. Generally, these methods are called boundary
element methods.

Use of these methods produces a dense linear system of size O(N) by O(N), where N is
the number of boundary points (or panels) being used. It is not unusual to see size 3N by
3N, because of three physical quantities of interest at every boundary element.

A typical approach to solving such systems is to use LU factorization. Each entry of the
matrix is computed as an interaction of two boundary elements. Often, many integrals

e e— — - - T — T

Constructing Numerical Software Libraries 931

must be computed. In many instances, the time required to compute the matrix is consider-
ably larger than the time for solution.

Only the builders of stealth technology who are interested in radar cross sections are
considering using direct Gaussian elimination methods for solving dense linear systems.
These systems are always symmetric and complex, but not Hermitian.

For further information on various methods for solving large dense linear algebra prob-
lems that arise in computational fluid dynamics, see the report by Edelman [30].

32.4.2 Derivation of a block algorithm for LU factorization

Suppose the M x N matrix 4 is partitioned as shown in Fig. 32.5, and we seek a factoriza-
tion 4 = LU, where the partitioning of L and U is also shown in Fig. 32.5. Then we may
write,

L poUpg=A0p (38.3)
L 10Upo=410 (38.4)
LooUp =4y, (38.5)
LyoUpy + LUy =4y (38.6)

where dggisrx r, Ay isr X (N-r), Ay is (M —r)xr,and 4 is (M- r) X (N-7). Ly and
Ly, are lower triangular matrices with ones on the main diagonal, and Uy and U are
upper triangular matrices.

Equations (32.3) and (32.4), taken together, perform an LU factorization on the first A/
x r panel of 4 (i.e., 4y and 4)p). Once this is completed, the matrices, Lyg, Lg, and Uy,
are known, and the lower triangular system in Eq. (32.5) can be solved to give Up;. Finally,
we rearrange Eq. (32.6) as

A’y =4y = LUy =Ly Uy (32.7)
From this equation, we see that the problem of finding L, and U|; reduces to finding the

LU factorization of the (M — r) X (N — r) matrix A’,. This can be done by applying the
steps outlined above to A|| instead of to A. Repeating these steps X times, where

K =min (MIr[N/r)) (32.8)

: AOO A01 LOO 0 UOO U01

A1O A11 L1O l‘11 0 U11

Figure 32.5 Block LU factorization of the partitioned matrix 4. Agg is r x r, dgy is r X (N— 1), Aygis (M -r)xr,
and 4 is (M —r) x (N—r). Lyg and L are lower triangular matrices with ones on the main diagonal, and Uy and
U\ are upper triangular matrices.

932 Parallel and Distributed Computing

we obtain the LU factorization of the original M X N matrix 4. For an in-place algorithm,
A is overwritten by L and U—the ones on the diagonal of L do not need to be stored
explicitly. Similarly, when 4 is updated by Eq. (32.7), this may also be done in place.
After k of these K steps, the first k» columns of L and the first kr rows of U have been
evaluated, and matrix 4 has been updated to the form shown in Fig. 32.6, in which panel B
is(M—~kryxrand Cisr x (N— (k—1) r). Step k£ + 1 then proceeds as follows:

1. Factor B to form the next panel of L, performing partial pivoting over rows if neces-
sary. (See Fig. 32.14.) This evaluates the matrices Ly, L, and Uy in Fig. 32.6.

2. Solve the triangular system LyU; = C to get the next row of blocks of U.

3. Do a rank-r update on the trailing submatrix E, replacing it with £ = E — LU},

The LAPACK implementation of this form of LU factorization uses the Level 3 BLAS
routines XTRSM and xGEMM to perform the triangular solve and rank-» update. We can
regard the algorithm as acting on matrices that have been partitioned into blocks of r x
elements, as shown in Fig. 32.7.

32.5 Data Distribution

The fundamental data object in the LU factorization algorithm presented in Section
32.4.2 is a block-partitioned matrix. In this section, we described the block-cyclic method
for distributing such a matrix over a two-dimensional mesh of processes, or template. In
general, each process has an independent thread of control, and with each process is asso-
ciated some local memory directly accessible only by that process. The assignment of
these processes to physical processors is a machine-dependent optimization issue, and
will be considered later in Section 32.7.

An important property of the class of data distribution we shall use is that independent
decompositions are applied over rows and columns. We shall, therefore, begin by consider-
ing the distribution of a vector of M data objects over P processes. This can be described
by a mapping of the global index, of a data object to an index pair, (p,i), where p specifies
the process to which the data object is assigned, and i specifies the location in the local
memory of p at which it is stored. We shall assume 0 <m<Mand0<p<P.

U U
C
E L,

U,
E!

,_
S

Figure 32.6 Stage k + 1 of the block LU factorization algorithm showing how the panels B and C,
and the trailing submatrix £ are updated. The trapezoidal submatrices L and U have already been fac-
tored in previous steps. L has kr columns, and U has kr rows. In the step shown another r columns of
L and r rows of U are evaluated.

— e e —— o e T

= T o e v,

