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Edward Davenant said he “would have a man knockt in the head that should
write anything in Mathematiques that had been written of before.” So
reports John Aubrey in his Brief Lives. What is new here then?

To introduce the idea of measure the book opens with Borel’s normal
number theorem, proved by calculus alone, and there follow short sections
establishing the existence and fundamental properties of probability mea-
sures, including Lebesgue measure on the unit interval. For simple random
variables—ones with finite range—the expected value is a sum instead of an
integral. Measure theory, without integration, therefore suffices for a com-
pletely rigorous study of infinite sequences of simple random variables, and
this is carried out in the remainder of Chapter 1, which treats laws of large
numbers, the optimality of bold play in gambling, Markov chains, large
deviations, the law of the iterated logarithm. These developments in their
turn motivate the general theory of measure and integration in Chapters 2
and 3. i

Measure and integral are used together in Chapters 4 and 5 for the study
of random sums, the Poisson process, convergence of measures, characteristic
functions, central limit theory. Chapter 6 begins with derivatives according to
Lebesgue and Radon-Nikodym-—a return to measure theory—then applies
them to conditional expected values and martingales. Chapter 7 treats such
topics in the theory of stochastic processes as Kolmogorov’s existence theo-
rem and separability, all illustrated by Brownian motion.

What is new, then, is the alternation of probability and measure, probabil-
ity motivating measure theory and measure theory generating further proba-
bility. The book presupposes a knowledge of combinatorial and discrete
probability, of rigorous calculus, in particular infinite series, and of elemen-
tary set theory. Chapters 1 through 4 are designed to be taken up in
sequence. Apart from starred sections and some examples, Chapters 5, 6, and
7 are independent of one another; they can be read in any order.

My goal has been to write a book I would myself have liked when 1 first
took up the subject, and the needs of students have been given precedence
over the requirements of logical economy. For instance, Kolmogorov’s exis-



PREFACE

tence theorem appears not in the first chapter but in the last, stochastic
processes needed earlier having been constructed by special arguments
which, although technically redundant, motivate the general result. And the
general result is, in the last chapter, given two proofs at that. It is instructive,
I think, to see the show in rehearsal as well as in performance.

The Third Edition. The main changes in this edition are two. For the
theory of Hausdorff measures in Section 19 I have substituted an account of
L? spaces, with applications to statistics. And for the queueing theory in
Section 24 I have substituted an introduction to ergodic theory, with applica-
tions to continued fractions and Diophantine approximation. These sections
now fit better with the rest of the book, and they illustrate again the
connections probability theory has with applied mathematics on the one hand
and with pure mathematics on the other. .

For suggestions that have led to improvements in the new edition, I thank
Raj Bahadur, Walter Philipp, Michael Wichura, and Wing Wong, as well as
the many readers who have sent their comments. *

Envoy. 1 said in the preface to the second edition that there would not be
a third, and yet here it is. There will not be a fourth. It has been a very
agreeable labor, writing these successive editions of my contribution to the
river of mathematics. And although the contribution is small, the river is
great: After ages of good service done to those who people its banks, as
Joseph Conrad said of the Thames, it spreads out “in the tranquil dignity of a
waterway leading to the uttermost ends of the earth.”

PATRICK BILLINGSLEY

Chicago, Nlinois
December 1994
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Although sufficient for the development of many interesting topics in mathe-
matical probability, the theory of discrete probability spaces’ does not gofar
enough for the rigorous treatment of problems of two kinds: those involving
an infinitely repeated opération, as an infinite sequence of tosses of a coin,
and those involving an infinitely fine operation, as the random drawing of a
point from a segment. A mathematically complete development of probabil-
ity, based on the theory of measure, puts these two classes of problem on the
same footing, and as an introduction to measure-theoretic probability it is the
purpose of the present section to show by example why this should be so.

The Unit Interval '

The project is to construct simultancously a model for the random drawing of
a point from a segment and a model for an infinite sequence of tosses of a
coin. The notions of independence and expected value, familiar in the
discrete theory, will have analogues here, and some of the terminology of the
discrete theory will be used in an informal way to motivate the development.
The formal mathematics, however, which involves only such notions as the
length of an interval and the Riemann integral of a step function, will be
entirely rigorous. All the ideas will reappear later in more general form.

Let © denote the unit interval (0, 1}; to be definite, take intervals open on
the left and closed on the right. Let o denote the generic point of ). Denote
the length of an interval I =(a, b] by |/|:

(1.1) lIl={(a,b]|=b—a.

*For the discrete theory, presupposed here, see for example the first half of Volume I of FELLER.
(Names in capital letters refer to the bibliography on p. 581.)



