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Foreword

Puts, lorsque j'ail voulu descendre d celles (les choses) qui étaient
plus particuliéres, il s'en est tant présenté @ moi de diverses,

que je n'ai pas cru qu'il fit possible d l'esprit humain de distin-
guer les formes ou espéces de corps qui sont sur la terre, d'une
infinité d'autres qui pourraient y étre si c'edt été le vouloir de
Dieu de les y mettre, ni par conséquent de les rapporter d notre
usage, si ce n'est qu'on vienne au-devant des causes par les effets,
et qu'on se serve de plusieurs expériences particuliéres. [R. Des-
cartes: Discours de la méthode (Librairie Ch. Delagrave, Paris 1877)
Part 6, p.65]

It is an interesting fact that text-book physics is characterized by a strong pre-
dilection for direct problems, that is predicting physical effects on the basis of
known physical causes. The complex mathematical apparatus involved in solving in-
verse problems, especially the type covered in this book, presents serious diffi-
culties to the beginner in the field. He might also be surprised that a purely
industrial need is at least partially responsible for the writing of this book, a
hint that the field of inverse problems in optical physics has grown beyond mathe-
matical art.

What is it then which makes, for example, the apparatus industry take a close
look at the inverse problem in optical physics? Let me give one example from the
market of high- and low-speed banknote testing equipment. The function of such
machines is to test a graphic product, the banknote, for its genuineness with the
highest degree of security and reliability. The introductory chapter gives a direct
link to the type of problem encountered in optical authenticity checking.

However, this book will not reveal practical approaches to the solution of tech-
nical problems. The road leading to the technical implementation of the results
achieved so far is long and not easy.

Chapter 1 attempts a brief systematic survey of the inverse problems in optical
physics, together with a discussion of the role of prior knowledge. The chapter
presents a tentative list of more than 20 specific inverse optical problems (in-
cluding those not covered by this volume). The agreed size of the Topics in Current
Physics series volumes imposed the selection of not more than the following five
chapters.



VI

Chapter 2 presents a state-of-the-art review of the phase reconstruction problem
for wave amplitudes, as well as coherence functions with application to both Tight
and electron optics.

Chapter 3 is devoted to the problem of reconstructing a scattering object or
potential from scattered field amplitudes with emphasis on the question of uniqueness
and nonradiating sources. The reconstruction of the field up to the surface of the
scatterer, as well as the reconstruction of the object from the field outside the
object, are described in detail.

Chapter 4 reports recent work toward solving a superresolution problem, namely
the reconstruction of the near field of very small localized sources from far-field
data. As a by-product, this chapter contains a comprehensive study of nonuniform
plane waves.

Chapter 5 aims at the new field where coherence and radiometry overlap. The
relationship between far-zone and source coherence functions is discussed along
with new radiometric concepts for sources of any state of coherence. Both amplitude
and intensity correlations are considered. A brief survey of the history of radio-
metry is also given.

Finally, Chapter 6 reviews the retrieval of statistical features of random phase
screens from scattering data in terms of correlation functions and photon statistics.
Higher-order statistical properties of the scattered field are emphasized. Noncha-
otic scattered radiation due to a small number of scatterers is discussed.

We believe this is the first book written on the subject; too few people have
been taken this road. May this book invite others to join in the effort to widen
the potentials of this particular field.

Zug, Switzerland
July 1978 J.-F. Moser
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1. Introduction

H. P. Baltes

We begin the introductory chapter with a general definition of the inverse optical
problem. Next, we discuss the role of prior knowledge and the questions of uniqueness
and stability. We then review the various specific inverse problems in optics as

well as the contents of Chapters 2 to 6. Finally, we summarize the notation in co-
herence theory.

1.1 Direct and Inverse Problems in Optical Physics

The "direct" or "normal" problem in optical physics is to predict the emission or
propagation of radiation on the basis of a known constitution of sources or scat-
terers. The "inverse" or "indirect" problem is to deduce features of sources or
scatterers from the detection of radiation. An intuitive solution of the optical
inverse problem is commonplace: we infer the size, shape, surface texture, and ma-
terial of objects from their scattering and absorption of light as detected by our
eyes. Intuition has to give way to mathematical reconstruction as soon as we wish
to analyze optical data beyond their visual appearance. Examples are the extranola-
tion and deblurring of optical images, the reconstruction from intuitively inacces-
sible data such as defocused images and interferograms, or the search for information
that is "lost" in the detection process such as the phase.

Following CHADAN and SABATIER [1.1], a general definition of inverse optical
problems can be attempted as follows. We describe the sources and scatterers by
the set

G = {glagzn--:gn} (1-1)
of space-time functions 95 which we call the source functions (scatterers being
included as indirect or secondary sources). The resulting propagation of radiation

is described by the set

P [ sfpsnnsfy] (1.2)



of space-time functions f, called results or data, which can be checked by measure-
ment. From the source functions gj, we can derive unique data fi by virtue of the

direct relations

fi = E'i(gl’gZ""’gn) . (1.3)
where the set E of operators Ei provides a mapping of G into F, viz.

E:G»F ” (1.4)

In coherent optics, for example, the Ei correspond to certain integral transforma-
tions and the g:j and f’,i to source and, for example, far-zone amplitudes and their
correlations.

Solving the direct problem in optical physics means computing the data fi from
known source functions 95 using the direct relations (1.3). Solving the inverse
problem means finding source functions 95 which

1) correspond to given data fi by virtue of the prescriptions (1.3) and

2) are consistent with the physical information coming from general principles
or other experiments, the so-called prior knowledge.

The prior knowledge reduces the set of possible source functions. For example,
we can often take for granted that the source has a finite volume.

Apparently there are two opposite approaches to the above problem.

1) We establish formulas or algorithms which allow the reconstruction of the
source functions by inversion of the mapping (1.3,4), viz.

el re . (1.5)

The name "inverse problem" is usually reserved for this approach.

2) We find specific model source functions by trial and error and fit free param-
eters from the experimental data. This approach brings us back to the direct pro-
blem, since we have to check the models by (1.3). The notion of inverse problem in
the strict sense is usually understood to exclude such fitting procedures.

In practice there is, however, a more or less continuous transition from "inverse"
to "direct" procedures, the inverse character of the problem becoming Tess pronounced
with increasing prior knowledge (see Sect.1.2).

It is well known that an inversion of mapnings as indicated by (1.5) involves
the mathematical questions of the existence, uniqueness, and stability of the solu-
tion. For example, the extrapolation of optical image data [1.2,3] belongs to the
class of problems (usually called "ill-posed" or "improperly posed problems"), in
which the solution depends uniquely, but not continuously, on the data (see, e.qg.,
[1.4]). Small errors in the data can lead to large errors in the solution unless



suitable stabilizing constraints are imposed, i.e., unless additional prior know-
ledge can be taken for granted. Of course, errors and noise are inevitable in exper-
imental data.

As for historical remarks, we refer to the introduction of Chapter 3 (see also
[1.11).

1.2 Role of Prior Knowledge

Let us now attempt to re-collect the prerequisites for obtaining information on an
optical source or a scatterer (or the propagating medium) from experimental data.
The following scheme may be helpful.

phase detector

information signal
prior features intensity
knowledge of source data
scattering inverse detection
theory relation theory

The sought features of the source or the scatterer are, in principle, inferred from
intensity and phase data by virtue of the appropriate inverse relation, and account-
ing for the available prior knowledge. The inverse relation or inversion algorithm
is, of course, based on the pertinent theory of propagation and scattering of radi-
ation. Detectors provide intensity data. We thus have to deduce the necessary phase
information from intensity distributions. This problem of phase reconstruction is
the objective of Chapter 2. Intensity data can also include quantities from coherent
and quantum optics such as the modulus of the degree of coherence, the intensity
autocorrelation, and photon statistics. The correct evaluation of detector signals
requires knowledge of the theory of photodetection [1.5] and involves another in-
verse problem, namely how to reconstruct the statistics of the incident radiation
from that of the photoelectrons [1.6].

Prior knowledge means simply any knowledge about the source functions available
prior to the experiment in which we are interested, but, of course, not prior to the
development of the plan of observation [1.7]. Such knowledge is inferred from gen-
eral principles, hypotheses [1.8], the result of other experiments, and the constraints



imposed by the planned experimental procedure. The notion of prior knowledge used
here is distinct from epistemological or a priori knowledge in the strict Kantian
sense (see [1.7]1). Prior knowledge is crucial for achieving uniqueness and stability
of the solution of the inverse problem. Moreover, the nature of the prior knowledge
largely determines the character of the problem (inverse or direct). If sufficient
prior knowledge allows us to infer specific source models, we get away with solving
the direct problem and fitting the parameters, as is illustrated by the following
example.

1) We begin the well-known determination of stellar diameters from measurements
of the modulus |u| of the degree of coherence y as a function of angular spacing (see,
e.g., [Ref.1.2, Sect.2]). An enormous amount of prior knowledge is taken for granted
here: we assume that the source is a uniformly bright, circular disk with zero co-
herence area. Applying the Van Cittert-Zernike theorem to this model, we learn how
the angular diameter of the source is found from the first zero of |u|. We had,
therefore, to solve a "weak" inverse problem, i.e., to establish and evaluate nothing
but a direct relation.

2) Let us now drop the prior knowledge on the shape of the source. By the Van
Cittert-Zernike theorem, p is the Fourier transform of the intensity profile IO in
the source plane. Thus the shape and size of the source can, in principle, be deter-
mined by inversion of the Fourier transform relationship. However, we now have to
measure |u| over a large range, and must possibly reconstruct the phase of n. More-
over, we are faced with a serious extrapolation problem if we ask for small details
of the source intensity distribution.

3) If neither the intensity distribution I0 nor the degree of spatial coherence
g in the source plane is known, we have a still more complicated inverse problem
involving the convolution of 1o with the autocorrelation of 13/2 (see Sect.5.4.2).
Without further data (e.g., the radiant intensity), the measurement of |u| is not
sufficient for disentangling the information on I0 and Mo

Concluding this section we emphasize that the consideration of stability questions
and the exact specification of the prior knowledge are indispensable.

1.3 Survey of Specific Inverse Problems

This volume presents only a small number of selected topics out of the many (20 or
more) specific inverse problems of optical physics. In this section we attempt to
list the various problems, including those not to be covered in this book (and a few
that have hardly been attacked yet). Some readers may be concerned about what is not
to be found in this book. A selection (five out of ten originally planned chanters)
was imposed by the agreed size of the Topics in Current Physics series volumes.



Perhaps a future complementary volume will improve the situation.

In principle, we can distinguish two classes of inverse optical problems, namely

1) problems aiming at information on spatZal variations of the source functions
(spatial frequency spectra), such as the intensity profile or the degree of snatial
coherence and other space correlations, and

2) problems aiming at information on time variations (dynamics) of the source
functions (time frequency spectra) such as the spectral density or the degree of
temporal coherence and other time correlations.

In the present volume we consider mainly inverse problems of the type 1). We
notice, however, that speckle patterns in polychromatic 1ight [1.9] and scattering
by moving diffusers (see, e.g., [1.10]) involve time and space variation and are
included in Chapter 6. Another inverse problem combining spectral and spatial aspects
is the reconstruction of the shape of a cavity resonator from the eigenvalue spec-
trum (or temporal coherence function) mentioned in Chapter 5.

Another possible classification of inverse problems can be based on the statis-
tical aspect of the radiation. Thus we have inverse problems in classical radiative
transfer (“"transport of intensity" in the Timit of poor spatial coherence), wave
optics (coherence 1imit), and coherent and quantum optics. This volume presents a
selection of inverse problems with wave amplitudes (Chaps.3 and 4, first part of
Chap.2) and coherence functions (Chaps.5 and 6, second part of Chap.2). Inverse ra-
diative transfer is not studied in this book.

Including related mathematical questions, as well as a number of "applied pro-
blems", we arrive at the following, probably incomplete, list of Znverse problems
in optics. (The asterisk indicates that the problem is treated in this volume.)

1. Intensity propagation
1.1 Inverse radiative transfer (inverse transport theory)

2. Wave amplitudes

*Phase reconstruction

2.2 *Inverse diffraction (from surface to surface)

2.3 *Inverse scattering (determination of scattering object or potential)

2.4 *Reconstruction of source fields or scattering objects beyond diffraction
limit (superresolution problems)

2.5 Extrapolation of images beyond borders

2.6 Computational reconstruction from holographic data

2.7 Reconstruction of optical cavity from the eigenvalue spectrum

2.8 Inverse problems in ellipsometry
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erence functions

*Phase reconstruction for spatial coherence functions

*Phase reconstruction for temporal coherence functions

*Inversion of radiometric data for planar sources (2D)
3.4 Inverse diffraction and scattering of coherence functions for 3D sources
3.5 Extrapolation and superresolution problems for partially coherent Tight

4, Statistical states
4.1 Reconstruction of radiation field statistics from detector signals
4.2 Determination of statistical field operators from moments or correlations
4.3 Maximum entropy image restoration (photon statistical aspect)



