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Preface

This is a textbook intended for advanced undergraduate and graduate stu-
dents in physics and mathematics, as well as a reference for researchers.
The book is based on lectures given during the years at the Ben Gurion
University, Israel. Spinors are used extensively in physics; it is widely, ac-
cepted that they are more fundamental than tensors and the easy way to
see this fact is the results obtained in general relativity theory by using
spinors, results that could not have been obtained by using tensor methods
only. The book is written for the general physicist and not only to the
workers in general relativity, even though the latter will find it most useful
since it includes all what is needed in that theory.

But the foundations of the concept of spinors are groups; spinors appear
as representations of groups. In this text we give a wide exposition to the
relationship between the spinors and the representations of the groups. As
is well known, both the spinors and the representations are widely used in
the theory of elementary particles.

After presenting the origin of spinors from representation theory we,
nevertheless, apply the theory of spinors to general relativity theory, and a
part of the book is devoted to curved spacetime applications.

In the first four chapters we present the group-theoretical foundations
of the concept of two-component spinors. Chapter 1 starts with an intro-
duction to group theory emphasizing the rotation group. This followed
by discussing representation theory in Chapter 2, including a brief out-
line of the infinite-dimensional case. Chapters 3 and 4 discuss in detail
the Lorentz and the SL(2,C) groups. Here we give an extensive discussion
on how two-component spinors emerge from the finite-dimensional repre-
sentations of the group SL(2,C). Chapter 4 also includes the derivation
of infinite-dimensional spinors as a generalization to the two-component
spinors.

In Chapters 5 and 6 we apply the two-component spinors to a variety of
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probiems in curved spacetime. In Chapter 5 we discuss the Maxwell, Dirac
and Pauli spinors. Also given in this chapter the passage to the curved
spacetime of spinors. The gravitational field spinors are subsequently dis-
cussed in detail in Chapter 6. Here we derive the curvature spinor and give
the spinors equivalent to the Riemann, Weyl, Ricci and Einstein tensors.

In Chapter 7 we present the gauge field spinors and discuss their geo-
metrical properties. As is well known, gauge fields are extremely important
nowadays. The Euclidean gauge field spinors are f{inally discussed in Chap-
ter 8.

All chapters of the book start with the ordinary physical material before
introducing the spinors of that subject. Thus, for instance, the chapters
dealing with the Lorentz group and gravitation start with detailed discus-
sion of the theories of special relativity and general relativity.

It is a pleasure to thank our wifes Elisheva and Tova for creating the
necessary atmosphere and for their patience while writing this book. We are
grateful to the many students who attended the courses in spinors during
the years for their suggestions which led to a better presentation of the
material in the book. We also want to thank Silvia Behar for her help with
the Index of the book. Finally, we want to thank Julia Goldbaum for the
excellent job of typing the book, prepairing the Index, and for the many
suggestions for improvements.

Moshe Carmeli
Beer Sheva, Israel

Shimon Malin
Hamilton, N.Y.
U.S.A.
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Chapter 1

Introduction to Group
Theory

In this chapter a brief discussion on group theory is given. This includes the
concept of group and subgroup, normal subgroup and factor group. Isomor-
phism and homomorphism are subsequently discussed. This then followed
by introducing the rotation group and the group SU(2), the aggregate of
unitary matrices of order two and determinant unity. A homomorphism
between the pure rotation group and the group SU(2) is subsequently es-
tablished. The chapter is concluded with presenting invariant integrals over
the groups.

1.1 Review of Group Theory

In this section the fundamental concepts of group theory are briefly pre-
sented. For details the reader is refered to the books of Pontrjagin, van der
Waerden and others suggested at the end of the chapter.

1.1.1 Group and Subgroup

A non-empty set G of elements a, b, c,..., such as numbers, mappings,
transformations, is called a group if the following arioms are satisfied:

(1) There exists an operation in the set G which associates to each two
elements a and b of G a third element ¢ of G. This operation is called

1



2 CHAPTER 1. INTRODUCTION TO GROUP THEORY

multiplication, and the element c is called the product of a and b, denoted
by ¢ = ab;

(2) The multiplication is associative, namely, if a, b and ¢ are elements
of G, then (ab) c = a(bc);

(3) The set G contains a right identity, namely, there exists an element
e such that ae = a for each element a of G; and

{4) For each element a of G there exists a right inverse element, denoted
by a~!, such that aa™! =e.

If the set G is finite, then the group G is called finite and the number of
elements of G is called its order. Otherwise, the group G is called infinite. If
the product of any two elements a and b of G is commutative, namely, ab =
ba, the group is called abelian. In abelian groups the multiplication notation
ab is replaced by an addition notation a + b, and the group operation is
called addition. The identity is called zero and denoted by 0, and the inverse
of a is called the negative of ¢ and denoted by —a.

Since the product of group elements is associative, one writes for (ab) ¢ =
a (be) simply abe and for (a+b)+c=a+ (b+c) just a+ b+ c. The same
holds for products of any number of elements. One can easily show (see
Problem 1.1) that a right identity e is also a left identity, namely, ea = a,
for any element a of G.

Likewise, a right inverse a~! of a is also a left inverse, a~'a = e. Hence
the inverse of a~! is simply a. Moreover, it follows that both the identity
and the inverse are unique. This allows the use of the notation of the
notation of algebra such as a™*! = a™a, with a' = a, for any natural
number m. Negative powers of a are introduced by a=™ = (a=1)™, a® = e.
Hence aPa? = aP*?, and (aP)? = aP9, where p and q are integers.

An example of a group is the set of all nonzero rational numbers, if the
rule of combination is ordinary multiplication. The identity is the number
1.

Another example of a group whose elements are not numbers is the
aggregate of rotations of a plane or of space about a fixed point. Two
rotations a and b are combined by performing the rotations successively. If
b is carried out first and then a, the same result, i.e. the same final position
of all points of the space, may also be obtained by a single rotation, denoted
by ab. The group of rotations in space is an example of non-abelian group
since it is not immaterial whether one performs first the rotation a and then
b, or first b and then a. The identity of the rotation group is the identical
transformation that leaves every point in its original position. The inverse
of a rotation is the rotation in the opposite sense which cancels the first
one.



1.1. REVIEW OF GROUP THEORY 3

A set H of elements of a group G is called a subgroup of G if it is a group
with the same law of multiplication which operates in G. A necessary and
sufficient condition for a subset H of a group G to be a subgroup is that
if H contains two elements a and b it must also contain the element ab™!
(see Problem 1.2).

1.1.2 Normal Subgroup and Factor Group

Let G be a group and H a subgroup, and let a and b be two elements of
G. One calles a and b equivalent, a b, if ab~! is an element of H. The
group G is thus devided into classes of equivalent elements each called a
right coset of H relative to G. It follows that if A is a right coset of H and
a is an element of A then A = Ha. Moreover, every set of the form Hb is
a right coset and the subgroup H itself is one of the cosets. One can also
introduce left cosets of H, written in the form aH. They are obtained from
an equivalence relation such that a o< b if a=!b belongs to H.

A subgroup N of a group G is called an invariant or normal subgroup of
G if for every element n of N and a of G the element a~!na belongs to N.
It follows that a necessary and sufficient condition for right and left cosets
of a subgroup N to coincide is that N be a normal subgroup. Every group
has at least two normal subgroups, the subgroup which includes only the
identity, and the subgroup which coincides with the group itself. A group
which has no normal subgroup except for these two subgroups is called
simple.

If N is a normal subgroup of a group G and A and B are two cosets of
N, A= Na, B = Nb, then AB is also a coset of N. The multiplication of
cosets thus defined satisfies the group axioms, and the set of all cosets is
called the factor group of G by the normal subgroup N and is denoted by
G/N.

1.1.3 Isomorphism and Homomorphism

A mapping f of a group G on another group G’ is called isomorphism if
it (1) is one-to-one; and (2) preserves the multiplication. G and G’ are
then called isomorphic. The inverse f~! of an isomorphism f is itself an
isomorphism. An isomorphism of a group onto itself is called automorphism.
The aggregate of all automorphisms of a group forms a group.

A mapping f of a group G on another group G’ is called homomorphism
if it preserves the operation of multiplication. The set N of all elements of
G which go over into the identity of G’ under the homomorphism is called
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the kernel of the homomorphism. If the kernel coincides with the identity
of G then the homomorphism is an isomorphism. It follows that N is a
normal of G, and G’ is isomorphic to G/N. The isomorphism between G’
and G/N is called the natural isomorphism.

The mapping f of a group G on G/N defined by associating with each
element a of G the element f (a) = A of G/N containing a is a homomor-
phism, called the natural homomorphism of a group on its factor group. If f
is a homomorphism of a group G on another group G’ and H is a (normal)
subgroup of G, then f(H) is a (normal) subgroup of G’. If f is a homo-
morphism of a group G on another group G’, and g is a homomorphism of
G’ on a third group G”, then the mapping gf is a homomorphism of G on
G".

One finally notes that if f is a homomorphism of a group G on part
of another group G’ then the set of all elements of G’ which are images of
elements of G forms a subgroup of G’. Also, if f~! (H’) is the set of all
elements of G which go into H' C G’ under the homomorphism f, and if
H'is a (normal) subgroup of the group G’, then f~! (H’) is also a (normal)
subgroup of the group G.

1.2 The Pure Rotation Group SO(3)

A linear transformation g of the variables z1, =2, and z3, which leaves the
form z? + 22 + 2% invariant, is called a three-dimensional rotation. The
aggregate of all such linear transformations g forms a continuous group,
which is isomorphic to the set of all real orthogonal (namely, gg* = 1,
where g' is the transposed of g) 3-dimensional matrices and is known as
the three-dimensional rotation group. Omne can easily show that the deter-
minant of every orthogonal matrix is equal to either +1, in which case the
transformation describes pure rotation, or to —1, in which case it describes
a rotation-reflection. The aggregate of all pure rotations forms a group,
which is a subgroup of the 3-dimensional rotation group, and is known as
the pure rotation group. We will be concerned with the 3-dimensional pure
rotation group. This group is denoted by us by SO(3). (For more details,
see in the sequel.)

1.2.1 The Euler Angles

Let g be an element of the group SO(3), i.e., a 3-dimensional orthogonal
matrix with determinant unity. It is well known that one then can express
each such element in terms of a set of three parameters. An example of



