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Preface

This third edition is not a skin-deep revision. Almost every chapter has
been rewritten to reflect the changes that have taken place in industry.
Some of the earlier chapters on discrete devices have been combined to
make room for new material. Although the discussion of discrete devices
has been streamlined, you will still find a complete treatment of diodes
and transistors because an understanding of what these components are
and how they function is the foundation needed to understand ICs.

In revising the book, I discovered several areas that needed expansion.
Now, you will find new discussions of troubleshooting, optoelectronic
devices, power-supply filtering, load lines, graphical analysis, cascaded
stages, 4 parameters, classes D through S, JFET switches, JFET voltage-
variable resistances, dual-gate MOSFETs, VMOS interface circuits, diff-
amp analysis, negative-feedback circuits, foldback current limiting, para-
sitic oscillations, and phase-locked loops.

Besides the foregoing changes, I wrote many new chapters to cover
topics such as voltage and current feedback, JFET-controlled op-amp cir-
cuits, voltage-controlled current sources, current boosters, active Butter-
worth filters, comparators with hysteresis, window comparators, Schmitt
triggers, integrators, differentiators, waveshaping circuits, dc-to-dc con-
verters, switching regulators, 555 timers, and thyristors.

In addition to the changes in material, this new edition contains two
major changes in format. First, I have rewritten the book to allow you to
use either conventional or electron flow. Since either approach is valid,
there is no reason why I should saddle you with one type of flow when you
prefer the other. Chapter 1 discusses both types of flow and indicates how
either can be used in subsequent chapters.

The second major change is in the homework problems. Because of
many requests, I have expanded the problems at the end of each chapter to
include five categories: straightforward, troubleshooting, design, challeng-
ing, and computer. The straightforward section is similar to the problems
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of earlier editions. The troubleshooting, design, challenging, and computer
sections are new with this edition. Consider these new problems optional.
If they fit your program, fine. If not, ignore them. For example, most
schools will want to include the straightforward and troubleshooting
problems because they are basic to any technician program. Other schools
may use the design and challenging problems as well. And finally, schools
where computers are available for students may want to include the
computer problems to round out their programs. Chapter 1 describes the
new homework problems in more detail. In my opinion, the problems in
this book will enhance any program and bring a new dimension to elec-
tronics education.

As before, this book is for a student taking a first course in linear elec-
tronics. The prerequisites are a dc-ac course, algebra, and some trigonome-
try (at least enough to work with sine waves). In many schools it will be
possible to take the ac and trigonometry courses concurrently.

A final point. In addition to this textbook, a correlated laboratory
manual Experiments for Electronic Principles is available. It contains over
50 experiments including optional exercises in troubleshooting and design.
An extensive instructor’s guide is also available.

Albert Paul Malvino

SOFTWARE FOR ELECTRONIC PRINCIPLES, Third Edition

Software, on floppy disk, is available from the author. It allows an Apple IL
or IBM PC personal computer to be used to practice troubleshooting
electronic circuits from the textbook. Write to Dr. Malvino at

Malvino, Inc.

229 Polaris Ave., Suite 14
Mountain View, CA 94043
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Introduction

One of the prerequisites for reading this book is a course in dc circuit theory in which
topics like Ohm’s law, Kirchhoff’s laws, and other circuit theorems have been
discussed. This first chapter reviews a few basic ideas and introduces some view-
points that you might have missed the first time through basic dc theory.

1-1 CONVENTIONAL
AND ELECTRON FLOW

Which way do electric charges flow? Murphy’s law says that the number of deeply
held beliefs is equal to the number of possibilities, no matter how ridiculous.
Fortunately, there are only two possible directions for current: plus to minus, or
minus to plus.

THE FLUID THEORY

Franklin (1750) made an outstanding contribution with his fluid theory of electric-
ity. He visualized electricity as an invisible fluid. If a body had more than its normal
share of this fluid, he said it had a positive charge; if the body had less than a normal
share, its charge was considered negative. On the basis of this theory, Franklin
concluded that electric fluid flowed from positive (excess) to negative (deficiency).

The fluid theory was easy to visualize and agreed with all experiments conducted
in the eighteenth and nineteenth centuries. As a result, everybody accepted the
notion that charges were flowing from positive to negative (now called conventional
flow). Between 1750 and 1897, a large number of concepts and formulas based on
the conventional flow came into existence. During this period, the scientific commu-
nity became committed to conventional flow as a way of life.

Even today, the bulk of engineering literature continues to use conventional flow.
Somebody (usually an engineer or scientist) who invents a new device tends to insert
arrows on the device that point in the direction of conventional current.

T
CHAPTER
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Chapter 1

THE ELECTRON

In 1897, Thomson discovered the electron and proved that it had a negative charge.
Nowadays, the planetary concept of matter is well known. Matter is made up of
atoms. Each atom is a positively charged nucleus surrounded by orbiting electrons.
The outward push of centrifugal force on each electron is exactly balanced by the
inward pull of the nucleus. Therefore, electrons travel in stable orbits, in a manner
similar to the motion of the planets around the sun.

A copper atom has 29 protons and 29 electrons. Of the 29 electrons, 28 travel in
tight orbits around the nucleus; because of their small orbits, these electrons are
locked into the atom by the strong pull of the nucleus. But the 29th electron travels in
a very large orbit. Since it is relatively far from the nucleus, this electron feels almost
no nuclear attraction. As a result, it is called a free electron because it can easily
wander from one copper atom to the next.

ELECTRON FLOW

In a piece of copper wire, the only charges that flow are the free electrons. Under the
influence of an electric field. these free electrons flow out of the negative terminal of a
battery through the wire to the positive terminal. This is exactly opposite to
conventional flow, which creates a problem. Everybody now agrees that charges
actually flow from negative to positive in a piece of copper wire, but not everyone is
willing to discard the use of conventional flow.

Why the resistance to change? Because once you get above the atomic level, it
makes no difference whether you visualize charges flowing from negative to positive
or vice versa. Mathematically, you get the same answers either way. Therefore, even
though electron flow is the truth, the whole truth, and nothing but the truth,
conventional flow preserves the mathematical foundations of almost 200 years of
circuit theory.

What it comes down to is this: It is convenient for engineers to use both
conventional and electron flow, rather than choosing one or the other. At the atomic
level, they use electron flow to explain what is actually happening. Above the atomic
level, they pretend that a hvpothetical positive charge flows, rather than an electron.
Maybe someday the engineering community will change to electron flow when
analyzing circuits mathematically, but at this time the consensus is that such a
change is not worth the hassle.

EITHER FLOW VALID

When a device is discussed for the first time, both types of flow will be shown, with a
solid arrow for conventional flow and a dashed arrow for electron flow. You can use
either type of flow, so ignore the one you don’t want. As an example, Fig. 1-1a shows
a circuit with conventional current, and Fig. 1-1b shows the same circuit with
electron flow. In using this book, you should settle on either conventional flow or
electron flow; either is valid. Furthermore, occasionally seeing both types of current
is probably good training because you will encounter both types in industry.

After we introduce a device, we will drop the use of current arrows. Again, this is
good practice because industrial schematics show voltage polarities but not current
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directions. It’s up to you to know that charges flow from positive to negative (if you
use conventional flow) or from negative to positive (if you prefer electron flow).

1-2 VOLTAGE SOURCES

For any electronic circuit to work, there has to be a source of energy. An energy
source is either a voltage source or a current source. This section discusses the voltage
source, and the next section is about the current source.

IDEAL VOLTAGE SOURCE

An ideal or perfect voltage source produces an output voltage that does not depend
on the value of load resistance. The simplest example of an ideal voltage source is a
perfect battery, one whose internal resistance is zero. For instance, the battery of
Fig. 1-2a produces an output voltage of 12 V across a load resistance of 10 kQ2; Ohm’s
law tells us that the load current is 1.2 mA. If we reduce the load resistance to 30 Q, as
shown in Fig. 1-2b, the load voltage is still 12 V; the load current, however, increases
to 0.4 A. (Don’t reach for your calculator; all calculations in this section should be
done mentally.)

Figure 1-2¢ shows an adjustable load resistance (rheostat). The ideal voltage
source will always produce 12 V across the load resistance, regardless of what value it
is adjusted to. Therefore, the load voltage is constant; only the load current changes.

REAL VOLTAGE SOURCE

An ideal voltage source cannot exist in nature; it can exist only in our minds as a
theoretical device. It is not hard to understand why. Suppose the load resistance of
Fig. 1-2c approaches zero; then the load current approaches infinity. No real voltage
source can produce infinite current because every real voltage source has some
internal resistance. This resistance is typically less than 1 Q. For instance, a flashlight
battery has an internal resistance of less than 1 €, a car battery has an internal
resistance of less than 0.1 Q, and an electronic voltage source may have an internal
resistance of less than 0.01 Q.

Introduction 3

Fig. 1-1
(a) Conventional
flow. (b) Electron

Slow.

10 k2 12v— 300 12vV—/— R,

(a) (b} (c)

Fig. 1-2
Voltage source.
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Fig. 1-3
Load current.

0.06 &

(a) (b)

100 A

(c)

SHORTED-LOAD CURRENT

The internal resistance of a real voltage source appears in series with the load
resistance. For instance, Fig. 1-3a shows a 12-V source with an internal resistance of
0.06 Q. If we reduce the load resistance to zero, Ohm’s law gives
12V
I=-——=200A
0.06 Q

This is the maximum load current that the real voltage source can deliver; this
maximum load current is called the shorted-load current.

GRAPH OF LOAD CURRENT

You can visualize any real voltage source as shown in Fig. 1-3b: An ideal voltage
source Vg is in series with an internal resistance Rg. With Ohm’s law,

__ Vs
Rg+ R,

When the load resistance increases, the load current decreases. Plotting load current
versus load resistance for Fig. 1-3a, we get the graph of Fig. 1-3¢. There are no
surprises here. The load current is 200 A for zero load resistance. Then, as load
resistance increases toward infinity, the load current decreases toward zero. Note the
intermediate point where the load resistance matches the internal resistance; at this
point the load current is half the shorted-load current.

Figure 1-4 shows I, versus R, for any circuit. When R, is zero, I, is maximum and
equal to Vg/Rs. When R; equals Ry, I, is half the maximum value and equal to
Vs/2R. Further increases in R; cause /; to decrease toward zero.

I (1-1)

LOAD VOLTAGE

When the load resistance increases to infinity in Fig. 1-3b, the load voltage ap-
proaches the ideal source voltage. We can prove this as follows. The load voltage



>R,
equals
Ve=1LR,
Since I, = V/(Rs + R;), we can write
__ Vs
Ve R, + R, Ry
or
R,
V, = ———=—17, 1-2
L RS + RL S ( )

Look at the denominator. When R; approaches infinity, it swamps out (overpowers
or makes negligible) the internal resistance. For instance, when R; is 100 times
greater than Ry, the load voltage is approximately 99 percent of the source voltage.
When R, equals infinity (open load), the load voltage equals the ideal voltage.
Figure 1-5a illustrates the swamping effect of large load resistance. This is a graph
of Eq. (1-2) for a source voltage of 12 V and an internal resistance of 0.06 Q. When
the load resistance is zero (shorted), the load voltage is zero. When the load resistance
equals the internal resistance (0.06 (), V', equals 6 V because half the source voltage

is dropped across Rg.

v
PERCENT POINT
99 PERC
12V
{
|
6V F——*——STIFF REGION——Mm—M—
| 3
I i A,
0.06 Q 62
(a)
v
1 /99 PERCENT POINT
VS—-
|
% |
?_‘ |l<——-——STIFF REGION————
| i
1 | R,

Rs 100R;
(b)
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Fig. 1-4
Load current
versus load
resistance.

Fig. 1-5
Load voltage
versus load
resistance.
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As the load resistance continues to increase, the load voltage begins to plateau at
12 V. The load voltage asymptotically approaches 12 V, the value of the ideal or
open-load voltage. Notice the 99 percent point. At this point, the load resistance is
100 times greater than the internal resistance and the load voltage is approximately
99 percent of the source voltage.

Figure 1-5b shows V, versus R, for any circuit. When R, is zero, V is zero. When
R, equals Ry, V, is half of V. For larger load resistances, the load voltage approaches
the ideal source voltage. When R, is greater than 100Rg, V/; is more than 99 percent
of V.

STIFF VOLTAGE SOURCE

Often, the load resistance is much larger than the internal resistance of a voltage
source. This is equivalent to saying that the internal resistance is much smaller than
theload resistance. In this book, a stiff voltage source is one whose internal resistance
is at least 100 times smaller than the load resistance:

This is equivalent to saying that R; is at least 100 times greater than R The
important thing about a stiff voltage source is this: It produces a load voltage that is
between 99 and 100 percent of the ideal source voltage.

With a stiff voltage source the difference between the load voltage and the ideal or
open-load voltage is less than 1 percent, small enough to ignore for most trouble-
shooting, analysis, and design. The word “stiff” reminds us that the source is
delivering an almost ideal voltage to the load resistance.

1-3 CURRENT SOURCES

A voltage source has a very small internal resistance. A current source is different; it
has a very large internal resistance. Furthermore, a current source produces an
output current that does not depend on the value of load resistance.

HYPOTHETICAL EXAMPLE

The simplest example of a current source is the combination of a battery and a large
source resistance, as shown in Fig. 1-6a. In this circuit, the load current is

I, = Vs
b R+ R,
When R, is zero, the current is
12V
I, = ToMO 1.2 uA

Because Ry is so large, the load current is approximately 1.2 uA for a large range of
R;. For instance, when R, is 10 kQ,

12V

L= T0rMa

= 1.1988 uA



