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PREFACE

This book contains papers on topics in combinatorics (including graph theory) or num-
ber theory. The subject areas within correspond to the MSC (Mathematics Subject Clas-
sification) codes 05, 11, 20D60, and 52. Some topics discussed in this compilation in-
clude restricted Eisenstein series and certain convolution sums; zeroes of the Hurwitz zeta
function in the interval (O,1); prime factorization conditions providing multiplicities in
coset partitions of groups; mean value formulas for twisted Edwards curves; binary ma-
trices as morphisms of a triangular category; some diophantine triples and quadruples for
quadratic polynomials; codes associated with orthogonal groups; combinatorial sums and
series involving inverses of the Gaussian binomial coeffecients; full friendly index sets and
full product-cordial index sets of twisted cylinders; and properly charged coloring of two-

dimensional arrays. (Imprint: Nova)
o0

In Chapter | we parameterize the restricted Eisenstein series F, ,,(q) = Z o(n)q"

n=1
n = a (mod m)

in terms of certain theta functions for 7 = 8 and then use this parameterization to evaluate
n—1

the convolution sum Z o(m)o(n—m)foralln € Nandalla € {0,1,2,3,4,5,6,7}.

m =1
m = a (mod 8)

In 1947 Fine obtained an expression for the number a,(n) of binomial coefficients on
row n. of Pascal’s triangle that are nonzero modulo p. In Chapter 2 we use Kummer’s theo-
rem to generalize Fine’s theorem to prime powers, expressing the number a,« () of nonzero
binomial coefficients modulo p* as a sum over certain integer partitions. For fixed a, this
expression can be rewritten to show explicit dependence on the number of occurrences of
each subword in the base-p representation of 7.

Let G be a commutative group, and assume that the order of the elements of GG is at most
r.Let A C G. In Chapter 3 we show that the set Sym(A) = {h: |[AN(A+ h)| > a|A|}
is a ¢ log | A|—approximate group and 2Sym,(A) is a c;—approximate group, where ¢,
depends only on a, K, r, and ¢z depends only on «, K, where K is defined by K = |A —
Al/|A],
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Let ¥(n) := n[],,(1 + ) denote the Dedekind ¥ function. Define, for n > 3, the

ratio R(n) := Fc\)pg(%%l_z' In Chapter 4 we prove unconditionally that R(n) < €Y forn > 31.
Let N,, = 2---p, be the primorial of order n. We prove that the statement R(XN,,) > 46(2)
for n > 3 is equivalent to the Riemann Hypothesis.

In Chapter 5 the combinatorial properties of partitions with various restrictions on their
hooksets are explored. A connection with numerical semigroups extends current results on
simultaneous s/¢-cores. Conditions that suffice for a partition to possess required hooks are
developed.

For a forbidden graph L, let ex(p; L) denote the maximal number of edges in a simple
graph of order p not containing L. Let 7}, denote the unique tree on n vertices with maximal
degree n — 2, and let 7,; = (V, E) be the tree on n vertices with V' = {vg, v1,...,vp—1}
and E = {vgv1, ..., 000n—3, Un—3VUp—2, Vn—2U,—1 }. In Chapter 6 we give exact values of
ex(p; T,,) and ex(p; TY).

In Chapter 7 we first prove an inequality for the Hurwitz zeta function {(o, w) in the
case 0 > 0. As a corollary we derive that it has no zeros and is actually negative for
o € (0,1)and 1 — ¢ < w and, as a particular instance, the known result that the classical
zeta function has no zeros in (0, 1).

In Chapter 8 we show that the Herzog-Schonheim conjecture holds for finite groups
whose orders admit certain prime factorization. A main tool here is the group-theoretic
Chinese remainder theorem.

Let p = 3 or 5. In Chapter 9 we prove that any pair of additive forms of degree
k = p™(p — 1), with integer coefficients in n > p—Q_&Ikz — 2k variables, has common p-adic
zeros. The proof follows a combinatorial approach of looking for zero-sum subsequences
of the sequence of all column-vectors of the 2 x 2 coefficient matrix.

R. Feng and H. Wu recently established a certain mean-value formula for the coordi-
nates of the n-division points on an elliptic curve given in Weierstrass form (A mean value
formula for elliptic curves, 2010, available at http://eprint.iacr.org/2009/586.pdf). In Chap-
ter 10 we prove a similar result for the z and y-coordinates on a twisted Edwards elliptic
curve.

A composition of binary matrices leads us to a triangular category of binomial type with

corresponding triangular family of numbers {2¥("=*)}, - and with parameters B(n) =

"5+ 4 = 0,1,2,-- - The standard reduced incidence algebra of this triangular

category is the algebra of arithmetical functions with the convolution: (f * g)(n) =
S 2K =k) f(k)g(n — k). This algebra is isomorphic to the algebra of formal power
series C[[X]]. In Chapter 11 a distributive type characterization of binomial-multiplicative
arithmetical functions is established.

In Chapter 12, we give some new examples of polynomial D(n)-triples and quadruples,
i.e. sets of polynomials with integer coefficients, such that the product of any two of them
plus a polynomial n € Z[X] is a square of a polynomial with integer coefficients. The
examples illustrate various theoretical properties and constructions for a quadratic polyno-
mial n which appeared in recent papers. One of the examples gives a partial answer to the
question about number of distinct D (n)-quadruples if n is an integer that is the product of
twin primes.

Let G (n; W}) denote the class of non bipartite graphs on n vertices containing no wheel
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Wi, and f(n; W) = max{€(G) : G € G (n; Wy)}. In Chapter 13 we determine f(n; W5)
and f(n; Ws) by proving that (1) f(n;Ws) = [%J + [5] forn > 3 where s = n if
n#4k+2ands=n—1ifn =4k + 2 and (2) f(n; Ws) = Léj forn > 6.

In Chapter 14 we show that the Diophantine pair {1, 3} can not be extended to a Dio-
phantine quintuple in the ring Z[\/—2]. This result completes the work of the first author
and establishes nonextensibility of the Diophantine pair {1, 3} in Z[v/—d] for all d € N.

In Chapter 15 the number of representations of a positive integer by each of the five
forms

z? —|—:L’§+---+.T§,.+317§1.+1 +3:r%r+2+---+3:r?2,r =1,2,3.4,5

is determined.

In Chapter 16, we construct three binary linear codes C(SO~(2,q)), C(O~(2,q)),
C(SO~(4,q)), respectively associated with the orthogonal groups SO~ (2, ¢q), O~ (2, q),
SO~ (4, q), with g powers of two. Then we obtain recursive formulas for the power mo-
ments of Kloosterman and 2-dimensional Kloosterman sums in terms of the frequencies of
weights in the codes. This is done via Pless power moment identity and by utilizing the
explicit expressions of Gauss sums for the orthogonal groups.

In Chapter 17 several combinatorial sums and series involving inverses of the bino-
mial coefficients that can be evaluated in closed form are extended to the framework of
g-calculus. The main tool in the proofs is a representation of the reciprocal of a Gaussian
binomial coefficient as a ¢g-Beta integral.

Let G = (V, E) be a connected simple graph. A labeling f : V' — Z, induces two edge
labelings [+, f* : E — Zs defined by f*(xy) = f(2) + f(y) and f*(zy) = f(z)/(y)
for each xy € E. Fori € Zy, let vs(i) = |f~1(i)|, ep+ (i) = [(f1)7'(3)| and eg (i) =
|(f*)~(7)|. A labeling f is called friendly if |v;(1) — v£(0)| < 1. For a friendly labeling f
of a graph G, the friendly index of G under f is defined by i;f(G) = es+(1) —e;+(0). The
set {1?(0) | f is a friendly labeling of G'} is called the full friendly index set of G. Also,
the product-cordial index of G under f is defined by i}(G) = ef«(1) — es+(0). The set
{i7(G) | fis afriendly labeling of G’} is called the full product-cordial index set of G. In
Chapter 18, we will determine full friendly index sets and full product-cordial index sets of
twisted cylinders.

Let m, n, and c be fixed positive integers. A properly charged c-coloring of an m X n
array is a coloring which uses all ¢ colors and satisfies two additional conditions, one of
which is called the Bulge Rule. The genesis of these conditions is related to connectivity
constraints inherent in the definition of proper array [JQ3]. If the ¢ colors appear in a par-
ticular order, the properly charged c-coloring is said to be canonical. Chapter 19 discusses
two ways of enumerating the set of all properly charged canonical c-colorings of an m x n
array. The first method is a generating function constructed via the transition matrix [Z]
while the second method uses properties of Stirling numbers of the second kind to explicit
construct each properly charged canonical c-coloring as an array of two arrays.
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Chapter 1

RESTRICTED EISENSTEIN SERIES
AND CERTAIN CONVOLUTION SUMS

Ayse Alaca®, Saban Alaca’, Faruk Uygul* and Kenneth S. Williams®
Centre for Research in Algebra and Number Theory
School of Mathematics and Statistics, Carleton University
Ottawa, Ontario, Canada

Abstract

We parameterize the restricted Eisenstein series E, ,(q) = Z o(n)q" in terms of
n=1
n=a(mod m)

certain theta functions for m = 8 and then use this parameterization to evaluate the
n—1

convolution sum 2 o(m)o(n—m) foralln € Nand alla € {0,1,2,3,4,5,6,7}.
m=1

m=a(mod 8)

Keywords: Convolution sums, sum of divisors function, theta functions, Eisenstein series

2000 Mathematics Subject Classification: 11A25, 11F27

1. Introduction

Throughout this paper ¢ denotes a complex variable satisfying |¢| < 1. Let a € Z and
m € N. We define the restricted Eisenstein series £, ,(q) by

oo

Ea‘m(q) = z ()'(n)q",

n=1
n=a(mod m)

Received: December 9, 2010; Revised: April 4, 2011
*E-mail address: aalaca@connect.carleton.ca
TE-mail address: salaca@connect.carleton.ca
YE-mail address: fuygul@connect.carleton.ca
YE-mail address: kwilliam@connect.carleton.ca
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where o(n) denotes the sum of the positive divisors of n. An easy calculation shows that
forall a,b € Z and m € N we have

oo

Eqm(@)Eb—am(q) = 2 Sam(n)q", (1.1)

n=1
n=h(mod m)

where the convolution sum S, ,,(7) is given by

n—1
Sam(n):= Y  o(k)o(n—k), neN. (1.2)
k=1
k= a (mod m)

Thus, we can evaluate S, ,,(») for all » € N with » = b (mod m) if we can determine the
power series expansion of £, ,,(¢)Ep—q.m(q) in powers of ¢ in a different way. We show that
this can be done in the case m = 8 by parameterizing E, g(¢) in terms of the theta functions.
We remark that the sums S, ,,,(#) have been evaluated for m = 1 in [6, eq. (3.10)], form =2
in [6, egs. (5.3), (5.4)], for m = 3 in [7, Theorem 1.2] and for m = 4 in [4, Theorem 1.1].
We prove the following theorem in Section 3. For brevity we abbreviate S, g(n) to S,(n).

Theorem. Let n € N. For k € N define

ok(n):= Y d oi(n)=0(n), oi(t)=0, if t £N,
deN
d|n

and N
Ex = Ex(q) := [](1 —¢").
=1

n

Define integers c(n),d(n),e(n) (n € N) by

c(n)g" :==qE3E;, Y d(n)q" = ¢q*E{’E; 2,

n=1

M

=
I

e(n)q" =g’ E; *E{’Eg *Ef.

M

]
Il

(1) I/ n=0 (mod 8), then

So(n) = %m(n) + %G}(H/Z) - (% - %n)c(n), (1.3)
S1(n) = 7(n) = 5505(n) — 5503(n/2) — Be(n/8), (14)
2(n) = Seln) = 13503(n) ~ T203(n/2), (1.5)

83(n) = 8s() = 3503(n) - 503(1/2) +8c(n/8), (1.6)
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Su(n) = %03(,1)— %03(,1/2). (1.7)
(ii) If n= 1 (mod 8), then
So(n) = S (n) = 528—1:03(11) + (% - %n) o(n)+ %c(ﬂ), (1.8)
S5(n) = Sy(n) = 2_463(,7) _ 63—4c(n) + %e(n), (1.9)
Sa(m) = Ss(m) = 63—403(,1) - 63—4c(n) - %e(n), (1.10)
S4(n):S5(n):1—;/§03(n)—%c(n). (1.11)
(iii) If n = 2 (mod 8), then
So(n) = Sa(n) = §—§63(n/2) + (% - %n)c(n/z) + ;—;c(n/Z), (1.12)
Si(m) = ‘1—103(,1/2) + %c(n/Z) + %d(n), (1.13)
S3(n) = §:(n) = %03(11/2) - %c(n/Z), (1.14)
Suln) = Se(n) = %03(n/2) — i—;c(n/Z), (1.15)
Ss(n) = :—103(,7/2) + %c(n/Z) - %d(n). (1.16)
(iv) If n=3 (mod 8), then
So(n) = S3(n) = %m(n)—l- (%—%n)c(n)—%c(n), (1.17)
Si(n) = Sa(n) = 63—403(n) - ;—46'(11) + %e(n), (1.18)
Su(n) = $1(n) = —203(n) + Te(r), (1.19)
S5(n) = Se(n) = 63—403(n) - 63—4c(n) - %e(n). (1.20)
(v) If n=4 (mod 8), then
So(n) = Su(n) = 126—4103(n/4)+ (%—%n)o‘(n/@, (1.21)
Si(n) = S3(n) = 203(n/4) +2(— 1)V 8¢(n/4), (1.22)
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$2(m) = 503(1/4) + 5e(n/4),

2
Ss5(n) = S7(n) = 203(n/4) —2(— 1)V 8¢(n/4),
Se(n) = 303(;1/4) - gc(n/4).

(vi) If n=5 (mod 8), then

So(n) = Ss(n) = 2(53(1*1) + (L - 1n)cs(n) + I (n),

384 24 4 128¢
Si(n) = Sa(n) = —=03(n) — —=c(n)
7] = = — e —
‘ A= 128 3V T 128V
3 3 3
Sy(n) = S3(n) = a@(") — 676(”) + Ee(”),
3 3 5

Se(n) = S7(n) = 6—403(n) — ac(n) - -2-e(n).
(vil) If n= 6 (mod 8), then

So(n) = Se(n) = %%0’3(n/2) + (% — ?—1)1) o(n/2)+ i—;c(n/2),

Si(n) =Ss(n) = 4—10‘3(n/2) + %c(n/Z),

Sila) = Sl = %03(71/2) - %c(n/2),

Ss(n) = 3—103(,1/2) _ %c(n/Z) +8e(n/2),
|

S7(n) = 263(11/2) - %c(n/Z) —8e(n/2).

(viii) If n =7 (mod 8), then

23 37

Solom) = S2(n) = 503 (n) + (~ - —n)c(n) - =),

S1(n) = Se(n) = i03(n) — 63—40(n) — %e(n),

$2(m) = S5(n) = 7 03(n) ~ 2yel) + Seln),

We remark that

c(n)=e(n) =0, if n=0(mod 2), d(n)=0, ifn# 2 (mod 8).

(1.23)
(1.24)

(1.25)

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)

(1.31)

(1.32)

(1.33)

(1.34)

(1.35)

(1.36)

(1.37)

(1.38)
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There are 8 sums S,(n) (a = 0,1,2,...,7) to be evaluated in 8 cases depending upon
n (mod 8). Thus there are 8 x 8 = 64 formulae in total. It is interesting to note that of
these 64 formulae just 6 require only the divisor functions 63 and ¢, while of the remaining
58 formulae, in addition to the divisor functions o3 and o, 38 require ¢, 18 require ¢ and e,
and 2 require ¢ and d. It is simple to check that no linear relation of the type

d(n) = (4+B(=1)""28)63(n/2) + (C+D(~1)""2/)¢(n/2)
+(E+F(=1)""2/%)e(n/2), n=2 (mod 8), (1.39)

exists so that d is really required.
In proving our theorem we make use of the following result of Williams [8, Theorem 1]

Z o(m)o(n—8m) = 1%(53(77) + 6L463(n/2) + 1—16—63(n/4) + %0’3(}7/8)
meN

m<n/8
1 1 1

e (= oot~

2. Parameterization of Theta Functions and Restricted
Eisenstein Series

The theta functions @(q) and y(g) are defined by

oo

oq) =Y ¢, wig):=Y ¢ qecC, |g <1 2.1)

N—=—co n=0

The basic properties of these functions are

(0(a) +9(—9) = 260(¢"), [5,cq. (6.,

4 ©*(9) + 0% (—9) =2¢%(¢%), [5,¢q. (3.6.7)],
o(9)9(—q) = ¢*(—¢%), [5,¢eq. (1.3.32)],
L0(9) —9(—q) = 4qw(q®), [5,eq. (3.6.2)].

2.2)

Using the first three of these relations we can parameterize ¢(%q), ¢(+4¢%), o(£g*),
¢(%¢®) and @(%4'%) in terms of the parameters 4, B and X defined by

A=A(q) = 9(q), B=B(g) == 0(~q), X=X(g) = 3ABA>+B),  (3)
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namely

(0(q) =4, ¢(—q) =B,

=
_{
<
[l
N
RN
(¥
_|_
[~
N
N’
o~
2
I
<
<
[l
=
b
=

(2.4)

For future use, we note that under the transformation g — —¢g, we have
A(—q) =B, B(—q) =4, X(—9q) =X, (2.5)

and under the transformation g — ¢*, we have

.

A(g*) =

=

#+§),Bwﬁ=umi
A(P)B(¢?) = X7,

A (") +B(q°) = ,

(2.6)

We recall next how £} >(g) = 2 o(n)qg" can be parameterized in terms of 4 and B.
n=1
n=1(mod 2)

Jacobi proved that the number r4(7n) of representations of an odd positive integer » as the
sum of four integral squares is given by r4(n) = 8c(n). Hence

A—B = ¢'(q)—¢*(—q) = i ra(n)q" — im(n)(—q)”
n=0 n=0

= 2 2 ra(n)g" =16 z o(n)q"

n=1 n=1
n=1(mod 2) n=1(mod 2)



