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Preface

The microlocal analysis is the local analysis in cotangent bundle space. The
remarkable progress made in the theory of linear partial differential equations
over the past two decades is essentially due to the extensive applicaton of the
microlocalization idea. The Hamiltonian systems, canonical transformations,
Lagrange manifolds and other concepts, used in theoretical mechanics for
examining processes in the phase space, have in recent years become the central
objects of the theory of differential equations. For example, the evolution of
singularities of solutions of a differential equation is described most naturally in
terms of Lagrange manifolds and Hamiltonian systems, the solvability condi-
tions are formulated in terms of the behaviour of integral curves of the Hamil-
tonian system whose Hamiltonian function serves as the characteristic form, the
class of pseudodifferential equations arises in a natural way from that of differen-
tial equations under the action of canonical transformations, the class of sub-
elliptic operators is defined by means of the Poisson brackets, etc. The difficulty
faced in the microlocal analysis is connected with the principle of uncertainty
which does not permit us to localize a function in any neighbourhood of a point
of the cotangent space.

This paper presents a survey of the most interesting results, from our point of
view, of the microlocal analysis achieved over the recent years. Unfortunately,
due to lack of space many significant results could not be included. Also incom-
plete is the list of the literature cited; more complete lists can be found in Egorov
[1984], Shubin [1978], Hormander [1963, 1983, 1985], Taylor [1981] and
Tréves [1982].

The author expresses his thanks to V.Ya. Ivrii for his useful critical comments.



Chapter 1
Microlocal Properties of Distributions

§ 1. Microlocalization

The study of the singularities of solutions constitutes one of the most impor-
tant problems in the theory of differential equations. In this theory, just as in
other mathematical disciplines, one often examines functions modulo smooth
ones, so that the points where a given function is infinitely differentiable may be
neglected. This approach reflects physical realities: singular points correspond
to those phenomena which are most interesting from the point of view of each
physical theory.

In investigating physical processes that take place in a bounded space an
extensive use is made of the principle of locality. Its essence lies in that by
knowing the state of the process at a given moment of time in a fixed region 2
of the physical space one may determine, by means of physical laws, the course
of the process in a region £2', lying strictly inside £, for a future time interval.
During this time interval the effect of processes taking place outside Q will have
no influence on phenomena in £’ because the effect is propagated with a fintie
velocity.

“We can introduce a more general principle, the principle of microlocality, by
examining the phenomenon in a bounded region of the phase space. If we know
the state of the process in this region at a certain moment of time, we can
describe this process for future close points lying strictly inside the region. In
physical terms, this means that the change in the impulse too takes place with a
finite velocity because the acting forces are finite.

The above-mentioned principles are reflected in mathematical physics in
the investigation of singularities of solutions of differential equations. Namely,
local properties of such solutions are those properties which remain unaltered
when the solutions are multiplied by smooth functions with a small support.
Microlocal properties of a solution refer naturally to those properties which do
not change on “multiplication” of the solution by a smooth function having
support in a small neighbourhood of the given point in the phase space. How-
ever, this operation is much more complicated. In fact, it consists in multiplying
by an ordinary smooth cutoff function with a small support, in applying Fourier
transformation, in multiplying successively by a smooth cutoff function of dual
coordinates, and in applying inverse Fourier transformation. Instead of Fourier
transformation we can also use some other decomposition in plane waves; for
example, the Radon transformation. In fact, the microlocal analysis is the local
analysis on the cotangent bundle space.

A special feature of the microlocal analysis is the fact that localization in the
phase space is possible only to a certain extent: the localization of spatial
coordinates obstructs that of impulses. In quantum mechanics, this fact is re-
ferred to as the Heisenberg uncertainty principle.
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The last two decades have seen immensely fruitful applications of the
microlocality principle to the theory of partial differential equations. Every
function (ordinary or generalized) can be regarded as an aggregate of linear
differential equations which this functon satisfies. The microlocality principle
extends in a natural manner this aggregate to the system of pseudodifferential
equations derived from differential equations by transforming the phase space
without altering its structure. By applying the microlocality principle we not
only obtain a more precise description of singular points of a distribution but
we also have a simpler description of the propagation process of these singu-
larities. By this principle we can also extend to distributions the operations
defined initially for smooth functions only; for example, the operation of taking
trace or the operation of multiplication, etc.

Let us explain the idea of microlocalization with the following simple exam-
ple. Let n = 2 be a natural number and let f be a function in IR” of the form
f(x) = g(a-x), where a e R"\O, ¢ x = Y ., ;- x; and g is a function of a single
variable. If g(¢) has a singularity, for example, if g(¢) is not differentiable at ¢ = ¢,
then all the points x lying on the plane «-x = t, are singular points of f.
However, f is a smooth function in each direction lying on this plane so that for
it singular will be only the direction of the vector a. Radon’s theorem enables us
to represent each distribution f in 2'(R") as an integral of plane waves:

fx) = fl G0 d

Therefore at each point x those directions a will be singular for which the
distribution g,(t) has a singularity at the point ¢t = x-a. If, instead of Radon’s
theorem, we apply Fourier transformation, then f can be represented as an
integral of plane waves:

fx)= Jg(d)e‘” da,

where the integration is performed over the whole IR". Now those directions of a
become singular for f in which g(ta) does not decrease, as t — oo, rapidly enough.
As mentioned earlier, in the modern theory of differential equations the
microlocality principle is extensively applied to investigate the singularities of
the solution. Many important results achieved in recent years by means of this
principle in the theory of boundary-value problems, in the spectral theory, in the
theory of functions of several complex variables, and in other branches of
mathematics point towards great potentialities of the microlocal analysis.

§ 2. Wave Front of Distribution. Its Functorial Properties

2.1. Definition of the Wave Front. The notion of a singular point of a distri-
bution does not have only one meaning. Depending on the problem under
discussion, a singular point may signify a point of discontinuity, or a point where
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the function becomes infinite, or a point where the function has an essential
singularity in the sense of the theory of complex variables, etc. For the general
theory of distributions, the most natural is the following

Definition 2.1. A point x, is a non-singular point for a distribution u if there
exists a function ¢ in CF(IR") such that ¢(x,) # 0 and ¢pu e C*(R").

It follows from the definition that the singular points of a distribution consti-
ute a closed set. This set is known as the singular support of the distribution u
and is denoted by sing supp u. We can easily see that this set is invariant under
diffeomorphisms of the space; thus the definition of a singular support can be
readily extended to distributions on a smooth manifold.

For a smooth manifold X, we denote by T*(X) the cotangent bundle space
and by T*(X)\0 the same space with the zero section removed (see, for example,
Arnol’d [1974], Egorov [1984]). The following definition and examples are due
to Hormander. It should be remarked that in the general theory there are many
close concepts that are extensively used, namely, the analytic wave front, Gevrey
wave front, oscillation front, etc (see Hérmander [1983, 1985], Tréves [1982],
and §4.2 of Chapter 6).

Definition 2.2. A point (x4, £,) € T*(IR")\0 does not belong to the wave front
of a distribution u in 2'(R") if there are a function ¢ in C§(R"), with ¢(xg) # O,
and a cone I" in IR”, with vertex at the origin of coordinates, which contains in
its interior the ray {&; & = t&,, t > 0} such that the relations

Iu(&)l = 0((1 + 1&N)~")

holds for all £ e I and all integers N.
The wave front of u will be denoted by WF (u).

Example 2.1. If the distribution u is a plane wave, that is, if u(x) = g(a: x),
where o € R"\0 and g € 2'(R), then every direction &,, non-collinear with the
vector «, is non-singular for u. That is, WF(u) may only contain points (x4, &)
for which &, = te with t € R\0 and «- x,, € sing supp g.

Example 2.2. Suppose that n € R"\0, ¢ € C5(R"), $(0) =1 and $(0) > 0.
Then for the function

=, @kx)
u(x)= 3y, (pizx—)e"‘z"""’
=1

which is continuous in IR", the wave front consists of the ray {(0, tn), t > 0}
(Hormander [1979a]).

Summing over #, we obtain from this example a function whose wave front
coincides with an arbitrary conical closed subset of T*(IR"\O.

2.2. Localization of Wave Front. [t is comparatively easy to establish the
following properties of the wave front (see Hérmander [1971, 1983, 1985],
Egorov [1984]):
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1. Ifue 2'(R") and ¢ € CJ(IR"), then
WF(pu) = WF(u).

2. If =: T*(R") — R" is the natural projection, then nWF(u) = sing supp u
for every uin 2'(R").

2.3. Wave Front and Singularities of One-Dimensional Distributions. Let X
and Y be smooth manifolds, and let f: X — Y be a smooth map. f is called
proper if the set f ~*(K) is compact for every compact set K in Y. Fora ¢ € C3(Y)
and a proper map f we set

f*o(x) = o(f(x)).

Then f*p e C3(X) and f* is a continuous map from 2(Y) into 2(X). This
enables us to define, by means of duality, the pushforward f,u of every distribu-
tion u € 9’'(X) by the formula

(Lot 00 = <y, [*0).

It is obvious that the same construction remains valid for an arbitrary map
f (not necessarily proper) when u has a compact support, that is, when u € &'(X).

The pullback f*u of a distribution is defined when f is a submersion of X onto
Y. This last condition means that for every point y € Y the set f ~!(y} is a smooth
submanifold of X and all these submanifolds are diffeomorphic to a fixed
k-dimensional smooth manifold. Locally such a map is a projection, and in a
suitable local coordinate system it becomes the projection R* x R! - R*, If
¢ € CF(X) and the support of ¢ lies in a coordinate neighbourhood, and if
x = (x’, x"), where x' € R, x" € R/, then f,¢(x') = [ p(x’, x") dx". For any u €
2'(Y) we now set

(f*u9 (P> = <“’ fdP)

If f is both proper and submersion (for example, if f is a diffeomorphism),
then f*u and f_ v are simultaneously defined for every u € 2'(Y), v € 2'(X).

Example 2.3. Let n: R" — R* be the projection onto the x,-axis. In this case
both n*u, u € 2’'(R), and =0, v € &'(R"), are defined, and

m*o(x') = u(x") ® 1,,.. .«
nLu(x) = fv(xl, X3y ey Xp) dX5... dx,.

Using these concepts, we can establish the following

Theorem 2.1. Let Q be a domain in R", and let u € 2'(R2). A point (xq, &) of
T*(S2)\0 does not lie in WF (u) if and only if there exist a function ¢ in CZ(2),
with @(x) # 0, and an ¢ > O such that for every smooth function f: supp ¢ = R,
with [grad f(x,) — &o| < &, the function f,(ou)(t) is infinitely differentiable on the
real line (Guillemin and Sternberg [1977], Egorov [1985a]).



