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FOREWORD

The 13th International Heat Pipe Conference (13th IHPC) was held from September 21 till 25, 2004 in
Shanghai, China. Totally 122 full papers were submitted and 203 participants from 23 different countries
attended this conference. Many eminent scientists and engineers working on heat pipe science and
technology presented their latest accomplishment. Moreover, there were 14 companies who exhibited their
products related to heat pipes. | believe this conference could serve as a platform for all the participants to
exchange information and experience. Many important issues were communicated and discussed on the
conference. It will definitely contribute to the further development of heat pipe theory, technology and its
wide application in the world.

The Conference Proceedings incorporate 100 papers including 4 keynote lectures. These papers are
grouped into the following chapters: (1) keynotes; (2) fundamentals in heat pipes and thermosyphons;
(3) CPL & LHP; (4) oscillating/pulsating heat pipes; (5) mini/micro heat pipes; (6) special heat pipes;
(7) microelectronics/power electronics cooling; (8) terrestrial applications and (9) space applications. |
hope the Proceedings of {IHPC13 will be an important resource for heat pipe scientists and engineers and
will stimulate the further development of heat pipe science and technology.

Finally, I am very happy to take this opportunity to express my sincere gratitude to the committee on
International Heat Pipe Conferences, the sponsors, the participants of the 13th IHPC for their considerable
support and contribution to this conference, and the local organizing committee and editors of this

Proceedings for their hard work.

We are looking forward to the 14th IHPC, which will take place in 2007 in Brazil. We wish its organizers
great success.

Professor Hou Zengqi

Executive Chairman of the Local Organizing Committee
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THERMAL CONTROL TECHNOLOGIES FOR
COMPLEX SPACECRAFT

Theodore D. Swanson
National Aeronautics and Space Administration, Goddard Space Flight Center, Code 540,
Greenbelt, MD 20771, USA
Phone: 301-286-7854, Fax: 301-286-17017 E-mail: ted.swanson@nasa.gov

ABSTRACT

Thermal control is a generic need for all spacecraft. In response to ever more demanding science
and exploration requirements, spacecraft are becoming ever more complex, and hence their thermal
control systems must evolve. This paper briefly discusses the process of technology development,
the state-of-the-art in thermal control, recent experiences with on-orbit two-phase systems, and the
emerging thermal contro! technologies to meet these evolving needs. Some “lessons learned” based
on experience with on-orbit systems are also presented.

KEY WORDS: advanced thermal control, capillary pumped loops, loop heat pipes, heat pumps,

cryogenic, moon

1 INTRODUCTION

Scientific and exploration goals continually drive
the need for better spacecraft and instruments. The
data and knowledge gained by one mission
inevitably leads to more questions which can only
be answered by more advanced spacecraft with
higher performance, improved resolution, tighter
pointing accuracy, increased sensitivity, and the
ability to look into new parts on the electromagnetic
spectrum. In the past major improvements for
science missions were largely possible through new
sensor technology alone. However, it is increasingly
obvious that future advances will rely heavily on
technology improvements in a wide range of areas,
and especially in thermal management.

The implementation approach for thermal control in
spacecraft is changing. Traditionally, thermal
management was accomplished by discrete devices,
such as electrical heaters, multi-layer insulation, and
specialized radiative coatings which were selected
based on a mathematical analysis of the effect on a
known environment and specified operating
conditions. Spacecraft operating conditions were
normally rather broad (plus or minus 20°C to 30°C)
and power levels were low (in the 10’s to 100’s of
Watts), and such simple techniques worked well
enough. However, modern spacecraft and
instruments are requiring much tighter temperature
control (to a 1/10" ‘C) over large areas (several

square meters), and possibly require rejection of
several kW of waste heat. Planned exploration
missions will be going to locations with very
difficult thermal environments (e.g., the moon, Mars,
and near the sun) and may include propulsion,
power, habitats, instrumentation, and other
subsystems that will place very demanding
requirements on the thermal control subsystem.
New technologies are required to meet these needs.
Thermal control subsystems are also becoming
much more integrated with other subsystems on a
spacecraft or instrument. They can no longer be
developed in isolation or at the end of a spacecraft
design cycle, but must be done concurrently with
other subsystems. This situation is a natural
evolution driven by need to improve performance
and minimize mass/parasitic power of all support
subsystems. The lower the mass and parasitic
power of such support equipment, the greater the
payload that can be accommodated.

It is also evident that identifying just what new
thermal control technology is needed for such
complex systems, securing funding for its
development, and overcoming the obstacles to
introducing such new technology is a most
challenging task. This' challenge is generally
comparable to the technical challenge. This
perspective has profound implications for both
determining just what new technology should be
developed and how it is to be integrated into a
spacecrafft. :



The Goddard Space Flight Center (GFSC) is
primarily tasked to focus on robotic spacecraft and
instruments, or the human tended servicing of such
equipment. Hence this paper addresses the thermal
control subsystems of such spacecraft and
instruments. Goddard is the National Aeronautics
and Space Administration’s (NASA) lead center for
the Earth Science Enterprise, has a very significant
involvement in the Space Science Enterprise, and an
emerging role in the new Exploration Initiative.
Most recently NASA Headquarters asked GSFC to
assume management responsibility for the Robotic
Lunar Exploration Program. The first planned lunar
mission is an orbiter in 2008, to be quickly followed
by a lander in 2009. Early analytical studies
indicate that thermal control will be a significant
issue for many of these exploration missions, as well
as numerous planned future science missions.

2  PROCESS OF TECHNOLOGY
INTRODUCTION

One might imagine a logical process for technology
development in which needs are first identified and
independently verified, then costs and schedules are
established, and finally appropriate funding is
provided to bring the technology vision to reality.
Unfortunately, however, this scenario virtually
never happens for a variety of practical reasons:

1) The principal driver for technology development

is the mission and its science or exploration goals.

These goals are, by necessity, increasingly vague
the further out in time the mission is. This is
principally due to a tradeoff between what is
technically possible, the cost to fly a proposed
mission, and the perceived value of the
science/exploration. Often there are alternative
means of collecting new science data or
exploring. For example, one might use a
chronograph or an interferometer in the search
for terrestrial-like planets in other solar systems,
and these different mission concepts will require
very different thermal control technologies.

2) The perceived value of various mission concepts
changes over time. One new discovery, or
exploration achievement, may lead to new
understandings  that  supplant  previously
perceived values.

3) Developing practical technology is not a given.
Invariably there are unanticipated technical
difficulties, interactions with other subsystems,
and various subtleties that require extra time and
money to overcome. Thus, if one is trying to
develop new technology under a limited budget
and firm schedule - say to support a specific

planned mission - there is the very real risk of
not being successful.

4) Other drivers, such as the mission itself, specific
science and exploration goals, the budget, or
other technical subsystems upon which a
technology is dependent, may all change over
time.

5) Technology is often perceived as a threat from a
variety of viewpoints: technical performance,
schedule, and cost. Program Mangers, who are
responsible for mission success, often do not
want to be the first to fly a new technology; they
want proof of probable success. Hence, they are
commonly reluctant to incorporate new and
unproven technology.

The process of technology development may be
characterized as trying to hit a moving target (the
mission goals) with a wobbly arrow (the new
technology). Both the end point and the means of
getting there are somewhat unknown. Nevertheless,
the common phrase “technology is our future” is
certainly true. Technology enables new science and
new exploration. The challenge for technologists is
to realistically perceive what is possible with a given
schedule and budget, convince others of its worth,
and then bring it to fruition.
Given the difficulty of this process of technology
development and introduction, it is often best to
develop multiple technologies that have relatively
broad applicability. This less focused approach
provides a flexible set of technologies to meet a broad
set of problems. Securing funding is a typically a
multi-step process with institutional type funding
supporting the early efforts. Once a technology has
developed to a point where it appears promising, then
support can be sought from flight programs. However,
the transition from early development to flight
program support is often very difficult.

3 STATE-OF-THE-ART IN SPACE-
CRAFT THERMAL CONTROL

The most advanced thermal control technologies
currently employed in operational spacecraft are
two-phase loops, such as Capillary Pumped Loops
(CPLs) and Loop Heat Pipes (LHPs). These
technologies clearly represent the major thermal
control innovation of the last decade as they offer
orders of magnitude improvement over traditional
heat pipes (Ku, 1999; Swanson, 2004; Birur, 2004).
CPLs and LHPs are in many ways very similar, but
do have distinct characteristics (Butler, 2002). These
self-contained, two-phase devices utilize the latent
heat of evaporation/condensation of a fluid to
acquire and transport waste heat long distances with



negligible temperature drop. See Fig. 1.
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Both CPLs and LHPs consist of a closed loop with a
porous evaporator, or wick, at one end and a
condenser at the other. The wick may be a plastic
such as polycthylene or a metal. A pair of smooth
wall tubes connects the evaporator and condenser.
The loop is partially filled with a refrigerant,
typically ammonia or propylene for applications
near room temperature. Waste heat is applied to the
wick (which is saturated with the refrigerant) and is
absorbed by evaporation of the refrigerant. A fluid
reservoir is attached to the liquid line to
accommodate fluctuating fluid inventories and also
to provide a source of constant pressure against the
refrigerant, thus locking the loop at a constant
temperature. This temperature control is typically
accomplished by cold biasing the reservoir and
using make-up heaters to bring the temperature up to
the desired “set point”. Since the internal pressure
of the loop is held constant, evaporation and
condensation occur at a nearly constant temperature
that is determined by the basic thermophysical
properties of the refrigerant. Hence, the control set
point essentially establishes isothermal conditions
throughout the loop.

The resulting vapor is transported, via the non-
wicked connecting tubing, to the condenser (i.e.,
radiator) where it is condensed back to a liquid. This
condensation releases the waste heat that is then
rejected to space via radiation. The liquid is then
returned to the wick via a separate tube, and the
process continues. A surface tension developed at the
vapor/liquid interface across the menisci on the
porous wick provides the pumping force to circulate
the fluid. The system thus operates passively and
requires no mechanical pump or flow control devices
and is free from vibrations. Since it is a two-phase
device a CPL or LHP can provide a very stable and
constant interface temperature regardless of changes
in the heat load and/or radiator sink condition.

CPLs and LHPs can operate stably and at constant
temperature regardless of changing heat loads and/or
thermal sink. Operationally, their most difficult
issue is in startup since this involves getting the

1-Vapor Grooves

liquid and vapor to the proper locations throughout
the loop (Ku, 1995).

4 ON-ORBIT EXPERIENCE WITH
TWO-PHASE LOOPS

The development of CPLs was initiated in the United
States in the early 1980’s. The first flight experiments
were conducted on the Space Shuttle in 1986 (Ku,
1986). LHP technology, which is similar but distinct
from CPL technology, was initiated and developed in
Russia (Maidanik, 1992). After extensive ground
testing and additional flight experiments during the
early 1990°s, CPLs and LHPs finally reached
technology readiness for space applications.

The first operational CPLs were on NASA’s
TERRA spacecraft, the first Earth Observing
System (EOS) platform, which was launched in
December of 1999 (Chalmers, 2000). The TERRA
spacecraft is depicted in Fig. 2. TERRA has three
scientific instruments that use CPLs for tight
temperature control. Each instrument has two fully
redundant, ammonia based, CPLs and several
traditional heat pipes and electrical heaters. While
each instrument has redundant CPLs, at any given
time only one is active. Instrument waste heat loads
vary from 25W to 264W.

Fig.2 Conceptual Image of TERRA

In the 4+ years since TERRA was launched all three
operating CPLs have provided a stable interface
temperature as required by the instrument, under all
modes of spacecraft operation, heat load, and
environmental sink conditions (Ku, 2004). The
TERRA CPLs have demonstrated an on-orbit
capability to maintain temperature control within
+/—0.1°C. On two of the instruments the CPL was
started easily, but on one, the TIR instrument, there
was some minor difficulty in maintaining operations.
On January 7, 2000, one of TIR’s CPL loops was
started using a standard start-up procedure.
However, the loop deprimed after just 62 hours.
The instrument’s second CPL was started on
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