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Assembly Language for Intel-Based Computers, Fifth Edition, teaches assembly language program-
ming and architecture for Intel IA-32 processors. It is an appropriate text for the following types of
college courses:

» Assembly Language Programming

« Fundamentals of Computer Systems

- Fundamentals of Computer Architecture

Students use Intel or AMD processors and program with Microsoft Macro Assembler (MASM)
8.0, running on any of the following MS-Windows platforms: Windows 95, 98, Millenium, NT, 2000,
and XP.

Although this book was originally designed as a programming textbook for college students, it has
evolved over the last 15 years into much more. Many universities use the book for their introductory

computer architecture courses. As a testament to its popularity, the fourth edition was translated into
Korean, Chinese, French, Russian, and Polish.

Emphasis of Topics This edition includes topics that lead naturally into subsequent courses in
computer architecture, operating systems, and compiler writing:

« Virtual machine concept

« Elementary boolean operations

« Instruction execution cycle

» Memory access and handshaking

« Interrupts and polling

« Pipelining and superscalar concepts

« Hardware-based 1/0

» Floating-point binary representation
Other topics relate specifically to Intel IA-32 architecture:

» TA-32 protected memory and paging

« Memory segmentation in real-address mode

« 16-bit interrupt handling

« MS-DOS and BIOS system calls (interrupts)

« 1A-32 Floating-Point Unit architecture and programming

« JA-32 Instruction encoding
Certain examples presented in the book lend themselves to courses that occur later in a computer
science curriculum:

» Searching and sorting algorithms

« High-level language structures

« Finite-state machines

« Code optimization examples

Xix
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Improvements in the Fifth Edition A number of improvements and new information have been
added in this edition, listed in the following table by chapter number:

Chapter | ... - = Improvements
2 Improved explanation of the instruction execution cycle.
5 An expanded link library with additional subroutines to write rich user interfaces, calculate program

timings, generate pseudorandom integers, and parse integer strings. The documentation of the library
has greatly improved.

6 Improved explanation of conditional jump encoding and relative jump ranges.

7 Two-operand and three-operand IMUL instructions are added. Performance comparisons are shown
for differing approaches to integer multiplication.

8 Completely redesigned so that low-level details of stack frames (activation records) are explained first
before introducing MASM’s high-level INVOKE and PROC directives.

10 Improved documentation of the book’s macro library.

1 New topic: Dynamic memory allocation in MS-Windows applications. Improved coverage of file
handling and error reporting in MS-Windows applications.

12 Improved coverage of calling C and C++ functions from assembly language.

17 Introduction to the 1A-32 floating-point instruction set. Floating-point data types. 1A-32 Instruction
encoding and decoding.

Still a Programming Book This book is still focused on its original mission: to teach students how
to write and debug programs at the machine level. It will never replace a complete book on computer
architecture, but it does give students the first-hand experience of writing software in an environment
that teaches them how a computer works. Our premise is that students retain knowledge better when
theory is combined with experience. In an engineering course, students construct prototypes; in a
computer architecture course, students should write machine-level programs. In both cases, they have a
memorable experience that gives them the confidence to work in any OS/machine-oriented environment.

Real Mode and Protected Mode This edition emphasizes 32-bit protected mode, but it still has
three chapters devoted to real-mode programming. For example, there is an entire chapter on BIOS
programming for the keyboard, video display (including graphics), and mouse. Another chapter cov-

ers MS-DOS programming using interrupts (system calls). Students can benefit from programming
directly to hardware and the BIOS.

The examples in the first half of the book are nearly all presented as 32-bit text-oriented applications
running in protected mode using the flat memory model. This approach is wonderfully simple because it
avoids the complications of segment-offset addressing. Specially marked paragraphs and popup boxes
point out occasional differences between protected mode and real mode programming. Most differences
are abstracted by the book’s parallel link libraries for real mode and protected mode programming.

Link Libraries We supply two versions of the link library that students use for basic input-output,
simulations, timing, and other useful stuff. The 32-bit version (/rvine32.lib) runs in protected mode,
sending its output to the Win32 console. The 16-bit version (/rvinel 6.1ib) runs in real-address mode.
Full source code for the libraries is supplied on the book’s Web site. The link libraries are available

only for convenience, not to prevent students from learning how to program input-output themselves.
Students are encouraged to create their own libraries.
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Included Software and Examples All the example programs were tested with Microsoft Macro
Assembler Version 8.0. The 32-bit C++ applications in Chapter 12 were tested with Microsoft Visual

C++ .NET. The real-address mode programs in Chapter 12 (linking to C++) were assembled with
Borland Turbo Assembler (TASM).

Web Site Information Updates and corrections to this book may be found at the book’s Web site,
http://www.asmirvine.com, including additional programming projects for instructors to assign
at the ends of chapters. If for some reason you cannot access this site, information about the book and
a link to its current Web site can be found at www. prenhall . com by searching for the book title or for
the author name “Kip Irvine.”

Overall Goals

The following goals of this book are designed to broaden the student’s interest and knowledge in top-
ics related to assembly language:
« Intel TA-32 processor architecture and programming
« Real-address mode and protected mode programming
» Assembly language directives, macros, operators, and program structure
* Programming methodology, showing how to use assembly language to create system-level soft-
ware tools and application programs
* Computer hardware manipulation
« Interaction between assembly language programs, the operating system, and other application programs
One of our goals is to help students approach programming problems with a machine-level mind
set. It is important to think of the CPU as an interactive tool, and to learn to monitor its operation as
directly as possible. A debugger is a programmer’s best friend, not only for catching errors, but as an
educational tool that teaches about the CPU and operating system. We encourage students to look
beneath the surface of high-level languages and to realize that most programming languages are
designed to be portable and, therefore, independent of their host machines.

In addition to the short examples, this book contains hundreds of ready-to-run programs that dem-
onstrate instructions or ideas as they are presented in the text. Reference materials, such as guides to
MS-DOS interrupts and instruction mnemonics, are available at the end of the book.

Required Background The reader should already be able to program confidently in at least one
other programming language, preferably Java, C, or C++. One chapter covers C++ interfacing, so it is
very helpful to have a compiler on hand. I have used this book in the classroom with majors in both
computer science and management information systems, and it has been used elsewhere in engineer-
ing courses.

Features

Complete Program Listings A companion CD-ROM contains all the source code from the exam-
ples in this book. Additional listings are available on the book’s Web page. An extensive link library is
supplied with the book, containing more than 30 procedures that simplify user input-output, numeric
processing, disk and file handling, and string handling. In the beginning stages of the course, students
can use this library to enhance their programs. Later, they can create their own procedures and add
them to the library.

Programming Logic Two chapters emphasize boolean logic and bit-level manipulation. A con-
scious attemnpt is made to relate high-level programming logic to the low-level details of the machine.
This approach helps students to create more efficient implementations and to better understand how
compilers generate object code.
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Hardware and Operating System Concepts The first two chapters introduce basic hardware
and data representation concepts, including binary numbers, CPU architecture, status flags, and memory
mapping. A survey of the computer’s hardware and a historical perspective of the Intel processor family
helps students to better understand their target computer system.

Structured Programming Approach Beginning with Chapter 5, procedures and functional decom-
position are emphasized. Students are given more complex programming exercises, requiring them to
focus on design before starting to write code.

Disk Storage Concepts Students learn the fundamental principles behind the disk storage system
on MS-Windows-based systems from hardware and software points of view.

Creating Link Libraries Students are free to add their own procedures to the book’s link library
and create new libraries. They learn to use a toolbox approach to programming and to write code that
is useful in more than one program.

Macros and Structures A chapter is devoted to creating structures, unions, and macros, which are

esential in assembly language and systems programming. Conditional macros with advanced opera-
tors serve to make the macros more professional.

Interfacing to High-Level Languages A chapter is devoted to interfacing assembly language to C
and C++. This is an important job skill for students who are likely to find jobs programming in high-level -
languages. They can learn to optimize their code and see examples of how C++ compilers optimize code.

Instructional Aids All the program listings are available on disk and on the Web. Instructors are pro-
vided a test bank, answers to review questions, solutions to programming exercises, and a Microsoft
PowerPoint slide presentation for each chapter.

Summary of Chapters

Chapters 1 to 8 contain a basic foundation of assembly language and should be covered in sequence.
After that, you have a fair amount of freedom. The following chapter dependency graph shows how
later chapters depend on knowledge gained from other chapters. Chapter 10 was split into two parts
for this graph because no other chapter depends on one’s knowing how to create macros:

15 17
4
s 10 _
1 throughi}—» 9 (structs) 11
10
(macros) 13 14 12

4

16

1. Basic Concepts: Applications of assembly language, basic concepts, machine language, and data
representation.

2.JA-32 Processor Architecture: Basic microcomputer design, instruction execution cycle, [A-32
processor architecture, IA-32 memory management, components of a microcomputer, and the
input-output system.

3. Assembly Language Fundamentals: Introduction to assembly language, linking and debugging,
and defining constants and variables.
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4. Data Transfers, Addressing, and Arithmetic: Simple data transfer and arithmetic instructions,
assemble-link-execute cycle, operators, directives, expressions, JMP and LOOP instructions, and
indirect addressing.

5. Procedures: Linking to an external library, description of the book’s link library, stack opera-
tions, defining and using procedures, flowcharts, and top-down structured design.

6. Conditional Processing: Boolean and comparison instructions, conditional jumps and loops,
high-level logic structures, and finite state machines. ]

7. Integer Arithmetic: Shift and rotate instructions with useful applications, multiplication and
division, extended addition and subtraction, and ASCII and packed decimal arithmetic.

8. Advanced Procedures: Stack parameters, local variables, advanced PROC and INVOKE direc-
tives, and recursion.

9. Strings and Arrays: String primitives, manipulating arrays of characters and integers, two-
dimensional arrays, sorting, and searching.

10. Structures and Macros: Structures, macros, conditional assembly directives, and defining repeat blocks.

11. MS-Windows Programming: Protected mode memory management concepts, using the Microsoft
Windows API to display text and colors, and dynamic memory allocation.

12. High-Level Language Interface: Parameter passing conventions, inline assembly code, and linking
assembly language modules to C and C++ programs.

13. 16-Bit MS-DOS Programming: Calling MS-DOS interrupts for console and file input-output.

14. Disk Fundamentals: Disk storage systems, sectors, clusters, directories, file allocation tables, handling
MS-DOS error codes, and drive and directory manipulation.

15. BIOS-Level Programming: Keyboard input, video text, graphics, and mouse programming.

16. Expert MS-DOS Programming: Custom-designed segments, runtime program structure, and
Interrupt handling. Hardware control using 1/O ports.

17. Floating-Point Processing and Instruction Encoding: Floating-point binary representation and
floating-point arithmetic. Learning to program the 1A-32 Floating-Point Unit. Understanding the
encoding of IA-32 machine instructions.

Appendix A: MASM Reference

Appendix B: The IA-32 Instruction Set
Appendix C: BIOS and MS-DOS Interrupts
Appendix D: Answers to Review Questions

Reference Materials

Web Site The author maintains an active Web site at www.asmirvine.com.

Help File Help file (in Windows Help Format) by Gerald Cahill of Antelope Valley College. Docu-
ments the book’s link libraries, as well as Win32 data structures.

Assembly Language Workbook An interactive workbook is included on the book’s Web site, cover-
ing such important topics as number conversions, addressing modes, register usage, Debug program-
ming, and floating-point binary numbers. The content pages are HTML documents, making it casy
for students and instructors to add their own customized content. This workbook is also available on
the book’s Web site.

Debugging Tooels Tutorials on using Microsoft Code View, Microsoft Visual Studio, and Microsoft
Windows Debugger (WinDbg).

BIOS and MS-DOS Interrupts Appendix C contains a brief listing of the most-often-used INT 10h
(video), INT 16h (keyboard), and INT 21h (MS-DOS) functions.

Instruction Set Appendix B lists most nonprivileged instructions for the IA-32 processor family.
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For each instruction, we describe its effect, show its syntax, and show which flags are affected.

PowerPoint Presentations A complete set of Microsoft PowerPoint presentations written by the author.
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