Bl At E RS ESNE RS

Assembly Language

for Intel-Based Computers
Fiveth Edition

oy

IntelLEERFIRT

Kip R. Irvine Z

LPEARSONZ
__Education =

EE2ENS
ATEXRF Hihin

English reprint edition copyright © 2009 by PEARSON EDUCATION ASIA LIMITED and TSINGHUA
UNIVERSITY PRESS. ‘

Original English language title from Proprietor’s edition of the Work.

Original English language title: Assembly Language for Intel-Based Computers, Fiveth Edition by Kip R. Irvine,
Copyright © 2009

All Rights Reserved.
Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Prentice Hall, Inc.

This edition is authorized for sale and distribution only in the People’s Republic of China (excluding the Special
Administrative Region of Hong Kong, Macao SAR and Taiwan).

A BRENARH Pearson Education(H 4 #UH Hh i S BB 1 10 K U HHARURAT o

For sale and distribution in the People’s Republic of China exclusively
(except Taiwan, Hong Kong SAR and Macao SAR).

NRFhEARLFEER (FREFEFEES. R4 ITEXF
FEAEX) SHEXAIT.
kRt REENERZFLS BT 01-2007-5195 %

AP EHEUEA Pearson Education (34 ¥ E HARER) BB HAHFESE, EREETBHE.
RALERE, ERYR. SHERMEIE: 010-62782989 13701121933

B R4 B (CIP) 137

Intel T 4015 = F2 5% it = Assembly Language for Intel-Based Computers, Fiveth Edition: % 5 fg:
L/ (F) BIRE (rvine, K. R F. —EIA. —doni: HERFHRL, 20095

(CKFHENEE RINELEMRY] GEERO)

ISBN 978-7-302-19793-5

[L.1- 1L e TIL IEHRIES — BB — RS —#M — %30 V. TP313

T E R A 508 CIP Ht% T (2009) % 045374 5

EENH]: HAE

HARAAT: BB NFE R o db: dEREHRRFFEFIRE A R
http:/ /www.tup.com.cn mB 4w: 100084
#t 2 #: 010-62770175 HR). 010-62786544

BB 5IEHERSE: 010-62776969, c-service@tup.tsinghua.edu.cn

R B & & 010-62772015, zhiliang@tup.tsinghua.edu.cn

R E R

=T HEEATHR A6

EEFEFE

185X230 EMsk: 46

2009 45 A58 118 ED 3R: 2009 % 5 A% 1 IXETRI
1~3000

69.00 JT

ABWFLALFERE. IRET. S0, . RASHERENE, F5EERY N H RIS
YA, BERWIE: 010-62770177 ¥ 3103 PR S: 023984-01

IO

B CH M D
TOHOT O ek

e i B

HEA 21 A, HARERLE. B REGeENNZESEEMEE. EHHH0E
BERIIAA KIS BHARERRROAL, EREEES TGN, ST,
HEFEBERAA Y, DARIEGEEN. BRESSHENHMETEE, AT
IR I E BT, BE I IEAE K (R B 3 A K S R R

HHERE BRI 1996 4EFF8H, SESNELHRAREIE, BEHRT “R%EHHEN
HEME GEERO” F—RFIGEEA, Z2E M EEKYRMSE. BA 21 #E, &
MNAEARERSHEBMERBSNNE, ACENEME, Py REERE, K
BEBEIFERT, —MEEIERREXEEN T RESRAR R AT ENEE
E b2 MM B LB, ARAE “RETEIETEIELEM RS GEERBO”, L
WRIEE . IRUIHIBEEE R TR R A RSIEM KRR LR BARN. EFEENERK,
FIRBUWR A RATERZ ESMT EHLEE KR F BN, UMBATE “ Rt BB EEIE R
HMARS] GRERD” MEEF, EEGmERITERNTEE.

RPN i) T

‘PREfACE

®

Assembly Language for Intel-Based Computers, Fifth Edition, teaches assembly language program-
ming and architecture for Intel IA-32 processors. It is an appropriate text for the following types of
college courses:

» Assembly Language Programming

« Fundamentals of Computer Systems

- Fundamentals of Computer Architecture

Students use Intel or AMD processors and program with Microsoft Macro Assembler (MASM)
8.0, running on any of the following MS-Windows platforms: Windows 95, 98, Millenium, NT, 2000,
and XP.

Although this book was originally designed as a programming textbook for college students, it has
evolved over the last 15 years into much more. Many universities use the book for their introductory

computer architecture courses. As a testament to its popularity, the fourth edition was translated into
Korean, Chinese, French, Russian, and Polish.

Emphasis of Topics This edition includes topics that lead naturally into subsequent courses in
computer architecture, operating systems, and compiler writing:

« Virtual machine concept

« Elementary boolean operations

« Instruction execution cycle

» Memory access and handshaking

« Interrupts and polling

« Pipelining and superscalar concepts

« Hardware-based 1/0

» Floating-point binary representation
Other topics relate specifically to Intel IA-32 architecture:

» TA-32 protected memory and paging

« Memory segmentation in real-address mode

« 16-bit interrupt handling

« MS-DOS and BIOS system calls (interrupts)

« 1A-32 Floating-Point Unit architecture and programming

« JA-32 Instruction encoding
Certain examples presented in the book lend themselves to courses that occur later in a computer
science curriculum:

» Searching and sorting algorithms

« High-level language structures

« Finite-state machines

« Code optimization examples

Xix

XX Preface

Iy
—@

Improvements in the Fifth Edition A number of improvements and new information have been
added in this edition, listed in the following table by chapter number:

Chapter | ... - = Improvements
2 Improved explanation of the instruction execution cycle.
5 An expanded link library with additional subroutines to write rich user interfaces, calculate program

timings, generate pseudorandom integers, and parse integer strings. The documentation of the library
has greatly improved.

6 Improved explanation of conditional jump encoding and relative jump ranges.

7 Two-operand and three-operand IMUL instructions are added. Performance comparisons are shown
for differing approaches to integer multiplication.

8 Completely redesigned so that low-level details of stack frames (activation records) are explained first
before introducing MASM’s high-level INVOKE and PROC directives.

10 Improved documentation of the book’s macro library.

1 New topic: Dynamic memory allocation in MS-Windows applications. Improved coverage of file
handling and error reporting in MS-Windows applications.

12 Improved coverage of calling C and C++ functions from assembly language.

17 Introduction to the 1A-32 floating-point instruction set. Floating-point data types. 1A-32 Instruction
encoding and decoding.

Still a Programming Book This book is still focused on its original mission: to teach students how
to write and debug programs at the machine level. It will never replace a complete book on computer
architecture, but it does give students the first-hand experience of writing software in an environment
that teaches them how a computer works. Our premise is that students retain knowledge better when
theory is combined with experience. In an engineering course, students construct prototypes; in a
computer architecture course, students should write machine-level programs. In both cases, they have a
memorable experience that gives them the confidence to work in any OS/machine-oriented environment.

Real Mode and Protected Mode This edition emphasizes 32-bit protected mode, but it still has
three chapters devoted to real-mode programming. For example, there is an entire chapter on BIOS
programming for the keyboard, video display (including graphics), and mouse. Another chapter cov-

ers MS-DOS programming using interrupts (system calls). Students can benefit from programming
directly to hardware and the BIOS.

The examples in the first half of the book are nearly all presented as 32-bit text-oriented applications
running in protected mode using the flat memory model. This approach is wonderfully simple because it
avoids the complications of segment-offset addressing. Specially marked paragraphs and popup boxes
point out occasional differences between protected mode and real mode programming. Most differences
are abstracted by the book’s parallel link libraries for real mode and protected mode programming.

Link Libraries We supply two versions of the link library that students use for basic input-output,
simulations, timing, and other useful stuff. The 32-bit version (/rvine32.lib) runs in protected mode,
sending its output to the Win32 console. The 16-bit version (/rvinel 6.1ib) runs in real-address mode.
Full source code for the libraries is supplied on the book’s Web site. The link libraries are available

only for convenience, not to prevent students from learning how to program input-output themselves.
Students are encouraged to create their own libraries.

Preface xxi

- =]

Included Software and Examples All the example programs were tested with Microsoft Macro
Assembler Version 8.0. The 32-bit C++ applications in Chapter 12 were tested with Microsoft Visual

C++ .NET. The real-address mode programs in Chapter 12 (linking to C++) were assembled with
Borland Turbo Assembler (TASM).

Web Site Information Updates and corrections to this book may be found at the book’s Web site,
http://www.asmirvine.com, including additional programming projects for instructors to assign
at the ends of chapters. If for some reason you cannot access this site, information about the book and
a link to its current Web site can be found at www. prenhall . com by searching for the book title or for
the author name “Kip Irvine.”

Overall Goals

The following goals of this book are designed to broaden the student’s interest and knowledge in top-
ics related to assembly language:
« Intel TA-32 processor architecture and programming
« Real-address mode and protected mode programming
» Assembly language directives, macros, operators, and program structure
* Programming methodology, showing how to use assembly language to create system-level soft-
ware tools and application programs
* Computer hardware manipulation
« Interaction between assembly language programs, the operating system, and other application programs
One of our goals is to help students approach programming problems with a machine-level mind
set. It is important to think of the CPU as an interactive tool, and to learn to monitor its operation as
directly as possible. A debugger is a programmer’s best friend, not only for catching errors, but as an
educational tool that teaches about the CPU and operating system. We encourage students to look
beneath the surface of high-level languages and to realize that most programming languages are
designed to be portable and, therefore, independent of their host machines.

In addition to the short examples, this book contains hundreds of ready-to-run programs that dem-
onstrate instructions or ideas as they are presented in the text. Reference materials, such as guides to
MS-DOS interrupts and instruction mnemonics, are available at the end of the book.

Required Background The reader should already be able to program confidently in at least one
other programming language, preferably Java, C, or C++. One chapter covers C++ interfacing, so it is
very helpful to have a compiler on hand. I have used this book in the classroom with majors in both
computer science and management information systems, and it has been used elsewhere in engineer-
ing courses.

Features

Complete Program Listings A companion CD-ROM contains all the source code from the exam-
ples in this book. Additional listings are available on the book’s Web page. An extensive link library is
supplied with the book, containing more than 30 procedures that simplify user input-output, numeric
processing, disk and file handling, and string handling. In the beginning stages of the course, students
can use this library to enhance their programs. Later, they can create their own procedures and add
them to the library.

Programming Logic Two chapters emphasize boolean logic and bit-level manipulation. A con-
scious attemnpt is made to relate high-level programming logic to the low-level details of the machine.
This approach helps students to create more efficient implementations and to better understand how
compilers generate object code.

xxii

Preface

Py
—&

Hardware and Operating System Concepts The first two chapters introduce basic hardware
and data representation concepts, including binary numbers, CPU architecture, status flags, and memory
mapping. A survey of the computer’s hardware and a historical perspective of the Intel processor family
helps students to better understand their target computer system.

Structured Programming Approach Beginning with Chapter 5, procedures and functional decom-
position are emphasized. Students are given more complex programming exercises, requiring them to
focus on design before starting to write code.

Disk Storage Concepts Students learn the fundamental principles behind the disk storage system
on MS-Windows-based systems from hardware and software points of view.

Creating Link Libraries Students are free to add their own procedures to the book’s link library
and create new libraries. They learn to use a toolbox approach to programming and to write code that
is useful in more than one program.

Macros and Structures A chapter is devoted to creating structures, unions, and macros, which are

esential in assembly language and systems programming. Conditional macros with advanced opera-
tors serve to make the macros more professional.

Interfacing to High-Level Languages A chapter is devoted to interfacing assembly language to C
and C++. This is an important job skill for students who are likely to find jobs programming in high-level -
languages. They can learn to optimize their code and see examples of how C++ compilers optimize code.

Instructional Aids All the program listings are available on disk and on the Web. Instructors are pro-
vided a test bank, answers to review questions, solutions to programming exercises, and a Microsoft
PowerPoint slide presentation for each chapter.

Summary of Chapters

Chapters 1 to 8 contain a basic foundation of assembly language and should be covered in sequence.
After that, you have a fair amount of freedom. The following chapter dependency graph shows how
later chapters depend on knowledge gained from other chapters. Chapter 10 was split into two parts
for this graph because no other chapter depends on one’s knowing how to create macros:

15 17
4
s 10 _
1 throughi}—» 9 (structs) 11
10
(macros) 13 14 12

4

16

1. Basic Concepts: Applications of assembly language, basic concepts, machine language, and data
representation.

2.JA-32 Processor Architecture: Basic microcomputer design, instruction execution cycle, [A-32
processor architecture, IA-32 memory management, components of a microcomputer, and the
input-output system.

3. Assembly Language Fundamentals: Introduction to assembly language, linking and debugging,
and defining constants and variables.

Preface xxiii

&
*— o d

4. Data Transfers, Addressing, and Arithmetic: Simple data transfer and arithmetic instructions,
assemble-link-execute cycle, operators, directives, expressions, JMP and LOOP instructions, and
indirect addressing.

5. Procedures: Linking to an external library, description of the book’s link library, stack opera-
tions, defining and using procedures, flowcharts, and top-down structured design.

6. Conditional Processing: Boolean and comparison instructions, conditional jumps and loops,
high-level logic structures, and finite state machines.]

7. Integer Arithmetic: Shift and rotate instructions with useful applications, multiplication and
division, extended addition and subtraction, and ASCII and packed decimal arithmetic.

8. Advanced Procedures: Stack parameters, local variables, advanced PROC and INVOKE direc-
tives, and recursion.

9. Strings and Arrays: String primitives, manipulating arrays of characters and integers, two-
dimensional arrays, sorting, and searching.

10. Structures and Macros: Structures, macros, conditional assembly directives, and defining repeat blocks.

11. MS-Windows Programming: Protected mode memory management concepts, using the Microsoft
Windows API to display text and colors, and dynamic memory allocation.

12. High-Level Language Interface: Parameter passing conventions, inline assembly code, and linking
assembly language modules to C and C++ programs.

13. 16-Bit MS-DOS Programming: Calling MS-DOS interrupts for console and file input-output.

14. Disk Fundamentals: Disk storage systems, sectors, clusters, directories, file allocation tables, handling
MS-DOS error codes, and drive and directory manipulation.

15. BIOS-Level Programming: Keyboard input, video text, graphics, and mouse programming.

16. Expert MS-DOS Programming: Custom-designed segments, runtime program structure, and
Interrupt handling. Hardware control using 1/O ports.

17. Floating-Point Processing and Instruction Encoding: Floating-point binary representation and
floating-point arithmetic. Learning to program the 1A-32 Floating-Point Unit. Understanding the
encoding of IA-32 machine instructions.

Appendix A: MASM Reference

Appendix B: The IA-32 Instruction Set
Appendix C: BIOS and MS-DOS Interrupts
Appendix D: Answers to Review Questions

Reference Materials

Web Site The author maintains an active Web site at www.asmirvine.com.

Help File Help file (in Windows Help Format) by Gerald Cahill of Antelope Valley College. Docu-
ments the book’s link libraries, as well as Win32 data structures.

Assembly Language Workbook An interactive workbook is included on the book’s Web site, cover-
ing such important topics as number conversions, addressing modes, register usage, Debug program-
ming, and floating-point binary numbers. The content pages are HTML documents, making it casy
for students and instructors to add their own customized content. This workbook is also available on
the book’s Web site.

Debugging Tooels Tutorials on using Microsoft Code View, Microsoft Visual Studio, and Microsoft
Windows Debugger (WinDbg).

BIOS and MS-DOS Interrupts Appendix C contains a brief listing of the most-often-used INT 10h
(video), INT 16h (keyboard), and INT 21h (MS-DOS) functions.

Instruction Set Appendix B lists most nonprivileged instructions for the IA-32 processor family.

XXiv
—

Preface

®

For each instruction, we describe its effect, show its syntax, and show which flags are affected.

PowerPoint Presentations A complete set of Microsoft PowerPoint presentations written by the author.

Acknowledgments

Special thanks are due to Tracy Dunkleberger, Executive Editor for Computer Science at Prentice
Hall, who provided friendly, helpful guidance during the writing of the fifth edition. Karen Ettinger
did a terrific job as production editor, constantly keeping track of numerous minute details. Camille
Trentacoste was the book’s managing editor.

Fifth Edition
I offer my special thanks and gratitude to the following professors who boosted my morale, gave me
great pedagogical tips, and tirelessly examined the entire book. They have been a huge influence on
the development of this book, in some cases across multiple editions:

« Gerald Cahill, Antelope Valley College

+» James Brink, Pacific Lutheran University

» William Barrett, San Jose State University

Many thanks to Scott Blackledge and John Taylor, both professional programmers, who proofread
most of the manuscript and flagged numerous errors. Several people reviewed individual chapters:

« Jerry Joyce, Keene State College

« Tianzheng Wu, Mount Mercy College

» Ron Davis, Kennedy-King College

» David Topham, Ohlone College

» Harvey Nice, DePaul University

Fourth Edition
The following people were tremendously helpful in creating the fourth edition:
« Gerald Cahill, Antelope Valley College
« James Brink, Pacific Lutheran University
+ Maria Kolatis, County College of Morris
« Tom Joyce, Chief Engineer at Premier Heart, LLC
« Jeff Wothke, Purdue Calumet University
« Tim Downey, Florida International University

The following individuals provided valuable proofreading help in the fourth edition:
» Andres Altamirano, Miami
= Courtney Amor, Los Angeles
» Scott Blackledge, Platform Solutions, Inc.
» Ronald Davis, Kennedy-King College
« Ata Elahi, Southern Connecticut State University
« Jose Gonzalez, Miami
« Leroy Highsmith, Southern Connecticut State University
« Sajid Igbal, Faran Institute of Technology
« Charles Jones, Maryville College
* Vincent Kayes, Mount St. Mary College
« Eric Kobrin, Miami
+ Pablo Maurin, Miami
« Barry Meaker, Design Engineer, Boeing Corporation
« Ian Merkel, Miami
» Sylvia Miner, Miami

Preface - XXV

P —o

« M. Nawaz, OPSTEC College of Computer Science

« Kam Ng, Chinese University of Hong Kong

* Hien Nguyen, Miami

« Ernie Philipp, Northern Virginia Community College

» Boyd Stephens, UGMO Research, LLC

» John Taylor, England

« Zachary Taylor, Columbia College

« Virginia Welsh, Community College of Baltimore County
« Robert Workman, Southern Connecticut State University
« Tianzheng Wu, Mount Mercy College

» Matthew Zukoski, Lehigh University

CONTENTS

1.2

1.3

1.4

15

2.1

2.2

Preface xxiii

Basic Concepts 1

Welcome to Assembly Language 1
1.1.1 Good Questions to Ask 2

1.1.2 Assembly Language Applications 5
1.1.3 Section Review 6

Virtual Machine Concept 7
1.2.1 History of PC Assemblers 9
1.2.2 Section Review 9

Data Representation 9
1.3.1 Binary Numbers 10
1.3.2 Binary Addition 11

1.3.3 Integer Storage Sizes 12
1.3.4 Hexadecimal Integers 13
1.3.5 Signed Integers 14

1.3.6 Character Storage 16
1.3.7 Section Review 18

Boolean Operations 20
1.4.1 Truth Tables for Boolean Functions 22
1.4.2 Section Review 23

Chapter Summary 23

1A-32 Processor Architecture

General Concepts 25

2.1.1 Basic Microcomputer Design 26
2.1.2 Instruction Execution Cycle 27
2.1.3 Reading from Memory 30

2.14 How Programs Run 31

2.1.5 Section Review 32

IA-32 Processor Architecture: 33
2.2.1 Modes of Operation 33
2.2.2 Basic Execution Environment 34

25

®

vi

CONTENTS

2.3

2.4

2.5

2.6

3.1

3.2

3.3

3.4

2.2.3 Floating-Point Unit 36
2.2.4 Intel Microprocessor History 37
2.2.5 Section Review 38

IA-32 Memory Management 39
2.3.1 Real-Address Mode 39

2.3.2 Protected Mode 41

2.3.3 Section Review 43

Components of an I1A-32 Microcomputer 43
2.4.1 Motherboard 43

2.4.2 Video Output 44

2.4.3 Memory 45

2.4.4 Input-Output Ports and Device Interfaces 43

2.45 Section Review 46

Input-Output System 46
2.5.1 How It All Works 46
2.5.2 Section Review 48

Chapter Summary 49

Assembly Language Fundamentals

Basic Elements of Assembly Language 51
3.1.1 Integer Constants 52

3.1.2 Integer Expressions 52

3.1.3 Real Number Constants 53

3.1.4 Character Constants 54

3.1.5 String Constants 54

3.1.6 Reserved Words 54

3.1.7 Identifiers 54

3.1.8 Directives 55

3.1.9 Instructions 535

3.1.10 The NOP (No Operation) Instruction 57
3.1.11 Section Review 58

Example: Adding Three Integers 58
3.2.1 Alternative Version of AddSub 60

3.2.2 Program Template 61

3.2.3 Section Review 61

Assembling, Linking, and Running Programs 62
3.3.1 The Assemble-Link-Execute Cycle 62
3.3.2 Section Review 64

Defining Data 64

3.4.1 Intrinsic Data Types 64

3.4.2 Data Definition Statement 64

3.4.3 Defining BYTE and SBYTE Data 66

51

Y
®

CONTENTS

vii

3.5

3.6

3.7
3.8

4
and
4.1

4.2

3.44 Defining WORD and SWORD Data 67
34.5 Defining DWORD and SDWORD Data 68
34.6 Defining QWORD Data 69

347 Defining TBYTE Data 69

3.4.8 Defining Real Number Data 69

3.4.9 Little Endian Order 69

3.4.10 Adding Variables to the AddSub Program 70
3.4.11 Declaring Uninitialized Data 71

3.4.12 Section Review 71

Symbolic Constants 72

3.5.1 Equal-Sign Directive 72

3.5.2 Calculating the Sizes of Arrays and Strings 73
3.5.3 EQU Directive 74

3.54 TEXTEQU Directive 74

3.5.5 Section Review 75

Real-Address Mode Programming (Optional)
3.6.1 Basic Changes 75

Chapter Summary 76
Programming Exercises 77

Data Transfers, Addressing,
Arithmetic 79

Data Transfer Instructions 79
4.1.1 Introduction 79

4.1.2 Operand Types 80

4.1.3 Direct Memory Operands 80
4.1.4 MOV Instruction 81

4.1.5 Zero/Sign Extension of Integers 82
4.1.6 LAHF and SAHF Instructions 84
4.1.7 XCHG Instruction 84

4.1.8 Direct-Offset Operands 84

4.1.9 Example Program (Moves) 85
4.1.10 Section Review 86

Addition and Subtraction 87

4.2.1 INC and DEC Instructions 87

422 ADD Instruction 87

4.2.3 SUB Instruction 88

4.2.4 NEG Instruction 88

4.2.5 Implementing Arithmetic Expressions 89
4.2.6 Flags Affected by Addition and Subtraction 89
4.2.7 Example Program (AddSub3) 92

4.2.8 Section Review 93

75

viii

CONTENTS

.

4.4

4.5

4.6
4.7

5.1
5.2

5.3

5.4

5.5

Data-Related Operators and Directives
43.1 OFFESET Operator 94

432 ALIGN Directive 95

433 PTR Operator 95

43.4 TYPE Operator 96

435 LENGTHOF Operator 97

43.6 SIZEOF Operator 97

437 LABEL Directive 97

438 Section Review 98

Indirect Addressing 99
4.4.1 Indirect Operands 99

442 Arrays 100

4473 Indexed Operands 101
4.4.4 Pointers 102

445 Section Review 103

JMP and LOOP Instructions 104
45.1 IMP Instruction 104

452 LOOP Instruction 105

453 Summing an Integer Array 106
45.4 Copyinga String 106

4.5.5 Section Review 107

Chapter Summary 108
Programming Exercises 109

Procedures 111
Introduction 111

Linking to an External Library 111
52.1 Background Information 112
522 Section Review 112

The Book’s Link Library 113

5.3.1 Overview 113

532 Individual Procedure Descriptions 1 15
5.3.3 Library Test Programs 125

5.3.4 Section Review 129

Stack Operations 129

5.4.1 Runtime Stack 129

5.4.2 PUSH and POP Instructions 131
543 Section Review 134

Defining and Using Procedures 134
551 PROC Directive 134
552 CALL and RET Instructions 136

94

— o

ConTtents

&—
L o

5.5.3 Example: Summing an Integer Array 139
554 Flowcharts 140

5.5.5 Saving and Restoring Registers 140
5.5.6 Section Review 142

5.6 Program Design Using Procedures 143
5.6.1 Integer Summation Program (Design) 143
5.6.2 Integer Summation Implementation 145
5.6.3 Section Review 147

5.7 Chapter Summary 147
5.8 Programming Exercises 148

6 Conditional Processing 150
6.1 Introduction 150

6.2 Boolean and Comparison Instructions 151
6.2.1 The CPU Flags 151
6.2.2 AND Instruction 152
623 OR Instruction 153
6.2.4 XOR Instruction 154
6.2.5 NOT Instruction 155
6.2.6 TEST Instruction 155
6.2.7 CMP Instruction 156
6.2.8 Setting and Clearing Individual CPU Flags 157
6.2.9 Section Review 157

6.3 Conditional Jumps 158
6.3.1 Conditional Structures 158
6.3.2 Jcond Instruction 158
6.3.3 Types of Conditional Jump Instructions 159
6.3.4 Conditional Jump Applications 163
6.3.5 Bit Testing Instructions (Optional) 167
6.3.6 Section Review 168

6.4 Conditional Loop Instructions 169
6.4.1 LOOPZ and LOOPE Instructions 169
6.4.2 LOOPNZ and LOOPNE Instructions 169
6.4.3 Section Review 170

6.5 Conditional Structures 170
6.5.1 Block-Structured IF Statements 170
6.5.2 Compound Expressions 173
6.5.3 WHILE Loops 174
6.5.4 Table-Driven Selection 177
6.5.5 Section Review 178

6.6 Application: Finite-State Machines 179
6.6.1 Validating an Input String 180

L V)

CONTENTS

6.7

6.8
6.9

71
7.2

73

7.4

75

-
—e

6.6.2 Validating a Signed Integer 180
6.6.3 Section Review 183

Decision Directives 184

6.7.1 Signed and Unsigned Comparisons 185
6.7.2 Compound Expressions 186

6.7.3 .REPEAT and .WHILE Directives 188

Chapter Summary 189
Programming Exercises 190

Integer Arithmetic 193
Introduction 193

Shift and Rotate Instructions 194
7.2.1 Logical Shifts and Arithmetic Shifts 194
7.2.2 SHL Instruction 195

7.2.3 SHR Instruction 196

7.2.4 SAL and SAR Instructions 196

7.2.5 ROL Instruction 197

7.2.6 ROR Instruction 198

7.2.7 RCL and RCR Instructions 198

7.2.8 Signed Overflow 199

7.2.9 SHLD/SHRD Instructions 199
7.2.10 Section Review 200

Shift and Rotate Applications 201
7.3.1 Shifting Multiple Doublewords 201
7.3.2 Binary Multiplication 202

7.3.3 Displaying Binary Bits 202

7.3.4 Isolating MS-DOS File Date Fields 203
7.3.5 Section Review 203

Multiplication and Division Operations 204
7.4.1 MUL Instruction 204

74.2 IMUL Instruction 205

7.4.3 Benchmarking Multiplication Operations 207
744 DIV Instruction 208

7.4.5 Signed Integer Division 209

7.4.6 Implementing Arithmetic Expressions 211

7.4.7 Section Review 212

Extended Addition and Subtraction 213
7.5.1 ADC Instruction 213

7.5.2 Extended Addition Example 213

7.5.3 SBB Instruction 214

7.5.4 Section Review 215

Conrents

&>—
[4

7.6 ASCII and Unpacked Decimal Arithmetic 215
7.6.1 AAA Instruction 216
7.6.2 AAS Instruction 218
7.6.3 AAM Instruction 218
7.6.4 AAD Instruction 218
7.6.5 Section Review 219

7.7 Packed Decimal Arithmetic 219
7.7.1 DAA Instruction 219
7.7.2 DAS Instruction 220
7.7.3 Section Review 220

7.8 Chapter Summary 221
7.9 Programming Exercises 222

8 Advanced Procedures 224
8.1 Introduction 224

8.2 Stack Frames 225
8.2.1 Stack Parameters 225
8.2.2 Local Variables 233
8.2.3 ENTER and LEAVE Instructions 236
8.2.4 LOCAL Directive 237
8.2.5 WriteStackFrame Procedure 240
8.2.6 Section Review 241

8.3 Recursion 242
8.3.1 Recursively Calculating a Sum 243
8.3.2 Calculating a Factorial 243
8.3.3 Section Review 245

8.4 _MODEL Directive 246
8.4.1 Language Specifiers 247
8.4.2 Section Review 248

8.5 INVOKE, ADDR, PROC, and PROTO (Optional) 248
8.5.1 INVOKE Directive 248
8.5.2 ADDR Operator 249
8.5.3 PROC Directive 250
8.5.4 PROTO Directive 253
8.5.5 Parameter Classifications 255
8.5.6 Example: Exchanging Two Integers 256
8.5.7 Debugging Tips 256
8.5.8 Section Review 257

8.6 Creating Multimodule Programs 258
8.6.1 Hiding and Exporting Procedure Names 258
8.6.2 Calling External Procedures 258

